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A rigid (micro) robot mounted serially to the tip of a long, flexible (macro) robot
is often used to increase reach capability, but flexibility in the macromanipulator can
make it susceptible to vibration. A rigid manipulator attached to a flexible but unactuated
base was used to study a scheme to achieve micromanipulator positioning combined with
vibration damping of the base. Inertial interaction forces and torques acting at the base of
the rigid robot were studied to determine how to use them to damp the base vibration.

The ability of the rigid robot to create inertial interactions varies throughout the
workspace. There are also “inertial singularity” configurations where the robot loses its
ability to create interactions in one or more degrees of freedom. A performance index
was developed to quantify this variation in performance and can be used to ensure the
robot operates in joint space configurations favorable for inertial damping. When the
performance index is used along with appropriate vibration control feedback gains, the
inertia effects, or those directly due to accelerating the rigid robot links, have the greatest
influence on the interactions. By commanding the link accelerations out of phase with
the base vibration, energy will be removed from the system. This signal is then added to
the rigid robot position control signal. Simulated and measured interaction forces and

torques generated at the base of a rigid robot are compared to verify conclusions drawn




about the controllable interactions. In addition, simulated and experimental results

demonstrate the combined position control and vibration damping ability of the scheme.
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SUMMARY

A rigid (micro) robot mounted serially to the tip of a long, flexible (macro) robot
is often used to increase reach capability, but flexibility in the macromanipulator can
make it susceptible to vibration. A rigid manipulator attached to a flexible but unactuated
base was used to study a scheme to achieve micromanipulator positioning combined with
vibration damping of the base. Inertial interaction forces and torques acting at the base of
the rigid robot were studied to determine how to use them to damp the base vibration.

The ability of the rigid robot to create inertial interactions varies throughout the
workspace. There are also “inertial singularity” configurations where the robot loses its
ability to create interactions in one or more degrees of freedom. A performance index
was developed to quantify this variation in performance and can be used to ensure the
robot operates in joint space configurations favorable for inertial damping. When the
performance index is used along with appropriate vibration control feedback gains, the
inertia effects, or those directly due to accelerating the rigid robot links, have the greatest
influence on the interactions. By commanding the link accelerations out of phase with
the base vibration, energy will be removed from the system. This signal is then added to
the rigid robot position control signal. Simulated and measured interaction forces and
torques generated at the base of a rigid robot are compared to verify conclusions drawn
about the controllable interactions. In addition, simulated and experimental results

demonstrate the combined position control and vibration damping ability of the scheme.




CHAPTER1

INTRODUCTION

1.1 Motivation

The objective of this research was to develop a combined position and enhanced
vibration control scheme for a rigid manipulator attached to a flexible base. The
configuration is similar to a macro/micromanipulator (Figure 1-1), which has links that
are long and lightweight with a rigid robot attached serially to the end. Macro/micro
manipulators are desirable for certain uses, because the macromanipulator can provide
long reach capability by moving the robot to the general area of interest where it can then
be used for fine-tuned positioning. These are often used to perform tasks that humans
may be incapable of doing or that are dangerous for humans.

One application is in the nuclear industry where macro/micromanipulators are used to
remove nuclear waste from underground storage tanks [25]. In the application described
in the reference, a 39 foot, seven degree of freedom long-reach manipulator was used
with a rigid end effector to clean seven storage tanks at Oak Ridge National Laboratory
from 1996-2000. Two end effectors were used: one type measured the radiation field,

while the other scarified the tank walls.
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Another growing application is in space, where long reach capability is needed, but
weight is crucial [41,56,77,93]. The space shuttle has used a remote manipulator system
(RMS), or Canadarm, which was initially launched and used in 1981. One problem is
that approximately 1/3 of the time spent by astronauts in operation of the RMS is spent
waiting for vibration to decay [41]. The second-generation system, Space Station
Remote Manipulator System, or Canadarm 2, is a seven-jointed arm that was designed to
maneuver large payloads around the International Space Station. It will sometimes be
used with the Special Purpose Dexterous Manipulator to provide specific maintenance
tasks.

The problem is that flexible links are difficult to control and are susceptible to
vibration induced by movement of the rob‘ot itself or by external disturbances. The many

degrees of freedom involved make control of the coupled system a complex task. This



research considers the base of the rigid robot to be flexible, where the base motion is
similar to that due to vibration at the tip of a flexible macromanipulator with locked joints
(Figure 1-2). It is assumed for this work the joints of the macromanipulator are not
actuating so the only vibration in the system is due to externally applied disturbances or
motion of the rigid manipulator.

Many researchers have tackled the problem of developing control schemes to
eliminate unwanted vibration in flexible manipulators. One area involves determining
trajectories that will avoid or minimize inducing vibration; however, these schemes are
not useful for controlling vibration once it occurs. The macromanipulator actuators are
not a good option for vibration damping due to bandwidth limitations and non-collocation
of the actuators and end point vibration. This creates a non-minimum phase problem due
to time delays, further exacerbated by flexibility in the link(s). In addition, since only
gross positioning capability is really needed for the macromanipulator, it is an
unnecessary increase in cost and system complexity to use its actuators for vibration
control in addition to their already difficult task.

The use of the rigid manipulator to damp vibration in the macromanipulator has
proven to be a promising area. The micromanipulator produces inertial forces and
torques that act as disturbances to the macromanipulator under decoupled control. Under
coupled control, these inertial effects can be used as damping forces and torques and
applied directly to the tip of the macromanipulator. This also makes the system
minimum phase, further reducing the complexity of the control task. In addition, it is

much easier to provide high bandwidth actuators for a small robot arm than for a large




one, so its actuators can respond more quickly and efficiently to provide large inertial
forces and torques. Previous methods of damping vibration in this manner include
energy dissipation methods and inertial damping methods. The goal here is to command
the rigid robot to act as an active vibration damper, damping the motion of the
macromanipulator at the natural frequencies of the system. These along with other

methods of controlling macro/micromanipulators are discussed in more detail in Chapter

2.

1.2 Problem Overview

In this work, the rigid robot control scheme must perform the dual task of damping
unwanted base vibration (macromanipulator vibration) while providing position control
of the rigid robot. On the one hand, if the motion of the micromanipulator or combined
system is completely prescribed by the task, this method is not useful. However, under
circumstances where the task will allow small movements of the rigid robot to damp the
vibration, this technique can be very effective. After all, if the system is vibrating
uncontrollably the system performance is impacted. The controlled interactions are
collocated with the vibration at the tip of the macromanipulator, and the rigid robot can
respond quickly to create the inertial damping forces and torques. The goal here is to
reduce the vibration as quickly and efficiently as possible so the system can continue with
its task. This method requires no hardware modifications other than some type of

measurement of the vibration.




Most of the literature addresses macro/micromanipulator position control or vibration
control alone, but few researchers address both. The authors that have addressed both
assume limited base flexibility, thereby limiting the applicability of the work. In
addition, simulations and hardware demonstrations have been limited mostly to planar
translational vibration. Finally, operation throughout the workspace has not been
addressed, in particular at locations where coupling effects between the macro and
micromanipulator are unsuited to vibration damping.

The control scheme described in this dissertation was tested in simulations and
experiments in two main scenarios. The first was with the robot operating at a desired
joint space configuration and tested its ability to damp vibration induced by an applied
disturbance. The second scenario was for point-to-point motion where the rigid robot is
moving from an initial to a final joint space configuration in a given time period. Both of
these allow flexibility in choosing between alternate inverse kinematic joint space
configurations. If the joint space configuration of the rigid robot is a prescribed part of

the control scheme, another method of damping may be required.

1.3 Contributions

The contributions of this thesis are:
1. Extension of the macro/micromanipulator control problem to multiple degrees of
freedom by considering the analogous problem of a rigid manipulator mounted on a

flexible base.




2. Investigation of inertial singularities and variation in inertial damping performance
throughout the workspace.

3. Development of a control scheme that provides active base vibration damping in
parallel with rigid robot position control and establishment of appropriate vibration
control gain limits.

4. Verification of the above via simulation.

5. Experimental work including verification of the accuracy of the interaction force
and torque predictions and demonstration of the effectiveness of the control scheme on a

realistic multi-degree of freedom testbed.

1.4 Organization and Overview

This dissertation is organized in the following manner:

Chapter 1 discusses the motivation of the research, contributions of the work, and
outlines the dissertation.

Chapter 2 reviews the current state of literature on the subject of
macro/micromanipulator control and limitations of previous research.

Chapter 3 describes modeling of the flexible base manipulator. A Lagrangian
approach with a finite number of assumed modes was used to represent the flexible
manipulator, while a recursive Newton-Euler formulation was used to derive expressions
for the interaction forces and torques acting between the macro and micromanipulator.

The general form of these interactions is:




F,.=B(0)0+N,@08

iy

Tp= Bro(o)é +N, (010

0)+G,(0)+C,(0)i+N,(d,9,0,0)
520)+ Gy (0)+ Co(0)ii + N,4.(4,.0,6) (1-1)
where O represents the rigid robot joint variables and q represents the flexible
manipulator generalized coordinates. The rigid robot configuration, 0, joint velocities
and accelerations, and flexible base velocities and accelerations drive the interactions.
The goal was to study these interactions in order to determine how to use them in the
control scheme to damp the macromanipulator vibration.

Chapter 4 discusses in more detail the controllable interactions, or the first two terms
in each equation in 1-1. A performance measure is introduced which predicts the
effectiveness of the rigid robot in creating these interactions. The rigid inertia effects
(Bi(©) and B¢(0)) are particularly important for two reasons. First, the rigid robot must
have enough inertia to effectively apply interaction forces and torques to the
macromanipulator. The ratio of the rigid inertia to flexible inertia effects becomes an
important part of the performance index, discussed in Chapter 5. Second, there are joint
workspace configurations where these matrices become singular. These “inertial
singularities” represent physical limitations in that an inertia force or torque cannot be
created in one or more degrees of freedom. The variation in performance is driven by the
joint space configuration of the rigid robot, so the performance measure can be used to
choose joint space configurations better suited for inertial damping. The inertia effects
dominate the interactions in most non-singular configurations. However, the nonlinear
rigid effects may also become significant in certain cases and these are also discussed

here.



The control scheme is discussed in Chapter 5. The overall schematic is shown in

Figure 1-3. The flexible base vibration controller takes the form:

7 =-ID(0)* Kk (1-2)

where ID(0) represents an inverse dynamics function [4,19] designed to cancel the
significant rigid robot dynamics and x represents the motion of the flexible base. The

rigid robot motion will be commanded to absorb the vibration energy of the flexible base.
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Figure 1-3
Overview of Control Scheme

Chapter 6 discusses simulations of vibration damping of a three degree of freedom
anthropomorphic robot mounted on a flexible base. Simulations demonstrating
disturbance rejection as well as the use of the performance index in predicting better joint

space configurations for vibration damping during commanded motion are presented.




Chapter 7 discusses the experimental testbed and presents results from two areas of
testing. First, predicted and measured interaction forces and torques generated at the base
of a rigid three degree of freedom anthropomorphic robot are presented, which verified
many of the results presented in Chapter 4. Second, the ability of the controller to damp
vibration on a multi-degree of freedom testbed was tested. The macromanipulator
consists of two flexible links in a fixed joint configuration. Three links of a six degree of
freedom micromanipulator were used for vibration damping. Some promising results are
presented demonstrating overall vibration energy from the system. However, several
implementation issues arose that limited the effectiveness of the scheme on the testbed.
These are discussed in more detail as well as proposed means of addressing these issues
for future work.

Chapter 8 summarizes the results and suggests area of further research. Finally,
Appendix A includes the equations for the interaction forces and torques for four typical

robot configurations.




CHAPTER 11

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the general topic of macro/micromanipulator control.
Macro/micromanipulators were introduced in the early 1980s as a means of improving
endpoint control of flexible manipulators, which were becoming more common for
applications where long reach capability was needed. Positioning errors due to flexibility
and other inaccuracies in the links of the macromanipulator are compensated for by the
micromanipulator.

First, literature on modeling flexible and rigid manipulators is reviewed. Since this in
itself is a very broad area, the research discussed here is specifically relevant to modeling
combined flexible/rigid systems. Next, general methods of controlling
macro/micromanipulators are discussed. The problem that becomes quickly apparent is
the large number of degrees of freedom involved and complexity of the resulting control
problem. The links of the macromanipulator are susceptible to vibration, so there are
additional degrees of freedom that need to be controlled as well as the rigid coordinates.
One option to reduce the complexity of the problem is to decouple control of the rigid
and flexible robots. In this case, the macromanipulator provides gross positioning while

the rigid robot provides the fine-tuned positioning. However, there are also problems

10




with this technique. The rigid robot produces inertial forces and torques which can act as
disturbances to the macromanipulator and worsen the vibration problem. In addition,
with larger and more flexible macromanipulators, vibration amplitudes can become too
large for the rigid robot to compensate for. Thus another area of research evolved which
focused on methods of commanding the micromanipulator to reduce vibration in the
macromanipulator. One way is to command the rigid robot using trajectories that will
reduce these disturbances. An alternate approach is to use the disturbances to damp the
vibration, which is the basis of the work described in this dissertation. The current state
of research in this area is reviewed as well as limitations of the work performed thus far.
In addition, there has been a great deal of related research in the area of space
robotics. This area has not been widely recognized as being related to the problem of
earth-based macro/micromanipulator control. However, the approach taken in this thesis,
where the rigid robot is considered attached to a flexible base, is very similar to space
robotics research that considers a rigid robot mounted to a floating base (spacecraft).

Some of the applicable space robotics research is also reviewed here.

2.2 Flexible and Rigid Manipulator Modeling

2.2.1 Flexible Robot Modeling

There are many methods available to model flexible link robots. Since the links are
distributed parameter systems, their motion is described by partial differential equations

instead of ordinary differential equations and hence modeling can become very
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challenging. In addition to the nonlinear rigid dynamics commonly found in robotic
systems, flexible manipulators also exhibit elastic behavior.

Book [8] developed a recursive Lagrangian approach for modeling flexible link
robots. Describing the position of a point on a flexible link requires both rigid and elastic
coordinates, so he suggested the use of 4 x 4 transformation matrices for more compact
representation. By choosing a finite number of assumed modes to model the elastic
motion, the position of a point along each flexible link can be written in terms of the rigid
and flexible coordinates. Expressions for kinetic and potential energy of the system can
then be developed. The kinetic energy terms consist of translational and rotational
energy of each link. Potential energy terms consist of elastic bending, gravity, and
shearing deformation effects.

Several authors have considered the relative importance of the energy terms and
under what circumstances certain effects may be neglected [46,52,72,83]. Most authors
involved in modeling flexible manipulators assume Euler-Bernoulli bending theory
applies. When this is the case, rotational inertia terms may be assumed negligible, and
potential energy terms only need to include elastic bending and gravity effects [83]. The
resultant equations are integrated over the spatial variable and used with Lagrange’s
equations to derive the equations of motion. One advantage of this method is that the
energy terms can include as much or as little detail as needed. Modal damping may also
be added if desired. Regardless of the method used to derive them, the equations of

motion take the form:
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M, (9)q+Cy(9,9)+ K,q+ G, (@) =Q
M= inertia matrix

Cb = nonlinear, coupling, and viscoelastic effects
K, = stiffness matrix

Gb = gravitational effects

Q = generalized forces

q= X | _|flexible coordinates
0r rigid joint coordinates

2-1)

The generalized forces are the joint actuation torques and contact forces and torques. In

the case of a macro/micromanipulator, the contact forces and torques will be those

created by the micromanipulator.

Lee [32], Lew [34], and Obergfell [53] used this method to model a two-link flexible

robot at Georgia Tech called RALF (Robot Arm, Large and Flexible). Other examples of

modeling a single flexible link can be found in Cannon [15], Loper [42], Nataraj [52],

and Smart and Wiens [72].

2.2.2 Rigid Robot Modeling

Common methods of modeling rigid robots are a Lagrangian approach or a Newton-

Euler formulation. Detailed descriptions of both methods can be found in Craig [18],

McKerrow [48], or Sciavicco and Siciliano [61]. The equations of motion take the form:
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B.(0)6+N_(0,0)0+G.(6)=T1

6 =rigid joint coordinates

B_(8) = symmetric, positive definite inertia matrix
N,(0,9) = centrifugal and coriolis effects

G, (0)=gravitational effects

7 = joint actuation torques (2-2)

2.2.3 Coupled Macro/Micromanipulator Models

One method of modeling macro/micromanipulators is using the recursive Lagrangian
approach mentioned above and treating the last few links as rigid. However, this quickly
becomes long and tedious. Lew [34] developed a more efficient method of deriving the
equations of motion of two robots connected serially. He concentrated on identifying the
coupling dynamics between the two manipulators assuming known models for each. The

coupled equations of motion take the form:

{Mb +M,, (q,0) Mb,(q,o)}[%,}{cbxf +C, (4,9,0,0) }{Kb o}[xf}zm 3
My(q0)  B®) ||§ | |NG0,0)+C, (4,q0,0)| [0 0]8 | 7

The notation used here is slightly different from the notation used in [34] and his papers

[35-40] in order to be consistent with the notation used in equations 2-1 and 2-2. My, Cy,

and K, represent macromanipulator properties and are defined along with q in equation

2-1. B and N; represent the rigid robot dynamics and are defined along with 0 in

equation 2-2. My, and My, are coupling inertia matrices, and Cy, and Cy; are nonlinear

coupling terms (gravitational effects are included in the nonlinear terms). It is further
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assumed the macromanipulator is not actuating so the only joint torques and rigid
coordinates that vary are those associated with the rigid robot. Most of the
macro/micromanipulator control literature uses this form of the coupled equations of
motion as a baseline model.

Sharf [63] introduced a means of effectively decoupling the macro and
micromanipulator models by finding expressions for the reaction forces acting between
the two bodies. This is equivalent to equation 2-3, the only difference being the explicit

definition of the interactions.

2.3 General Macro/Micromanipulator Control Approaches

The control of flexible manipulators has been studied extensively. Control of the
distributed, nonlinear systems is difficult and researchers have examined end point
sensing, robust control, vibration suppression, and command shaping techniques, among
others, to better control them. Book [9,10] discussed many of the problems associated
with controlling flexible manipulators. As discussed in section 2.2.1, modeling is
difficult but achievable if the system modes of interest can be limited to a finite number
of modes. The control problem is extremely complicated for many reasons. First,
flexible manipulators are susceptible to vibration, either induced by movement of their
long, flexible links or external disturbances. Second, the number of control variables
(joint variables) is less than the number of mechanical degrees of freedom, which include
both the rigid and flexible coordinates. Third, the dominant closed loop poles of the

system do not become more stable with increasing position control feedback gains. This
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limits the achievable bandwidth to about 1/3 that of a rigid manipulator [10]. Thus, lower
bandwidth actuators are typically used and they may not be fast enough to respond to the
vibration. In addition, the actuators are located at the joints of the macromanipulator
while the vibration of concern is at the end point. This non-collocation issue further
complicates the control problem. Non-minimum phase dynamics can result and,
combined with the many other control issues associated with flexible manipulators, may
threaten system stability.

Sharon, Hogan, and Hardt introduced macro/micromanipulators in the early 1980s as
a means of improving endpoint control of flexible manipulators [64,65]. They showed
that a rigid robot mounted serially to a flexible manipulator could be used to compensate
for position errors caused by macromanipulator flexibility and other inaccuracies. The
end point position control bandwidth was chosen to be approximately 15 times the first
natural frequency of the macromanipulator. Since the micromanipulator inertia is
relatively small, it can respond quickly to the rapid transients of the macromanipulator
vibration.

Much of the research in the control of macro/micromanipulators involves designing
specialized coupled control schemes. The many degrees of freedom involved combined
with additional challenges associated with controlling the flexible links make coupled
control a difficult task. These control schemes fall into three general categories. First are
schemes where both the macromanipulator and micromanipulator are controlled
concurrently. The complexity of these schemes makes them difficult to implement but

may be the only solution in some cases. The second area involves decoupled
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macromanipulator control schemes designed to control or reduce the vibration. Since
flexible manipulators have been in use for many years, there is a large pool of applicable
research that can help reduce vibration, including input shaping. A third area considers
the decoupled micromanipulator controller. These include schemes that use the rigid
robot to compensate for macromanipulator position error as well as schemes that actively
use the micromanipulator to reduce the vibration. The latter is the basis for this research
and the background in this area is described in more detail in the next section.

One well-known method of improving trajectory tracking is to use an inverse
dynamics function to cancel undesirable system dynamics. Bayo and Moulin [4] and
Devasia and Bayo [19] considered the control of flexible manipulators through the
solution of the system inverse dynamics. However, one major problem with applying
this method to a flexible link robot is that it is a non-minimum phase system. When the
dynamics are inverted the inverse dynamics model contains both positive and negative
real eigenvalues.

Kwon and Book [31] investigated inverse dynamic trajectory tracking for a single-
link flexible manipulator. Their goal was to develop a time domain inverse dynamics
method that enabled a flexible manipulator to follow a given end point trajectory
accurately without overshoot or residual vibration. They first modeled the manipulator
using the assumed modes method described in section 2.2.1 and developed the inverse
dynamics model. The tracking controller combined an inverse dynamics function for
feedforward control with a joint feedback controller. They worked around the non-

minimum phase issue by extending the solution set to include a non-causal solution and
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split the inverse dynamics into causal and anticausal parts. They showed in simulation
and experiment the effectiveness of the controller in producing fast, vibration-free motion
of a single flexible link manipulator. This work provided a valuable contribution in
showing that, with an understanding of the unique problems associated with flexible
systems, inverse dynamics could be implemented on them.

Several researchers have considered ways to reduce the complexity of combined
macro/micromanipulator control schemes. Singh and Schy [69] used a control law that
decouples the rigid and elastic behavior. They considered a PUMA-type robot with three
rotational joints mounted on a space vehicle, where the first two links are rigid and the
last link flexible. The elastic dynamics are further decomposed into two subsystems
modeling the transverse vibration of the elastic link in two orthogonal planes. A
proportional-integral-derivative (PID) controller is used on the joint angle errors. Two
fictitious forces acting at the tip of the flexible link are used to damp the elastic
oscillations. The scheme was shown effective and robust to modeling errors in
simulation. However, practical implementation would require a realistic way to provide
the elastic control forces.

Lew considered a different strategy of bracing the macromanipulator [34]. He
developed a hybrid controller for flexible link manipulators that make contact with the
environment at more than one point and proved its stability. He was able to show
effective position and force tracking control. Experimental work was performed at

Georgia Tech with a rigid robot mounted on the end of a two link flexible manipulator
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and demonstrated that the use of this technique could effectively reduce vibration in the
macromanipulator in the planar case.

Yim and Singh [90] used an inverse control law combined with a predictive control
law for a macro/micromanipulator. The inverse control law was used for end point
trajectory control of the rigid micromanipulator and is based on the inversion of the
input/output map. The predictive controller was used for end point control of the flexible

macromanipulator. It was developed for precise trajectory tracking and designed so the

flexible dynamics remained stable. The controller was derived by minimizing a quadratic

function of the tracking error, elastic deflection, and input control torques. The stability
of the scheme was proven and its effectiveness demonstrated via simulations. They also
considered the same predictive control law [89,91] except with a sliding mode controller
for the micromanipulator. The micromanipulator control scheme was variable structure
control, which is more insensitive to modeling errors. The sliding mode controller was
developed with the sliding surface functions of tip position, its derivative, and the integral
of the tracking error. Its purpose was to ensure precise trajectory tracking of the end
effector. Simulations of a single flexible link with a two rigid link micromanipulator
indicated that good end point trajectory control and elastic mode stabilization is
achievable.

Another wide area of research involves input shaping or trajectory modification
techniques to avoid inducing vibration during commanded moves. These techniques
reduce vibration in a system by convolving an impulse sequence with the desired

command. When the impulse sequence is chosen properly, the resulting reduction in
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vibration can be drastic, even in the presence of modeling uncertainties. The only
information required is the basic properties of natural frequencies and damping ratios of
the modes of concern.

Singer and Seering [68] reshaped an impulse input into two impulses, where the
second was delayed by Y2 the period of vibration to be avoided. The shaper was placed
outside the feedback loop. When more than two pulses are used, sensitivity to modeling
errors is reduced. The effectiveness of the technique was evaluated on a Space Shuttle
Remote Manipulator System (RMS) simulator at Draper Laboratory and showed a factor
of 25 reduction in endpoint residual vibration for typical moves of the RMS. Banerjee
[3] also showed the effectiveness of input shaping techniques on a shuttle experiment
with a very flexible payload. Simulated spin up and slew motion of the shuttle with two
150-meter long flexible antenna booms indicated much less residual vibration in the
flexible antennas when the motion was commanded with a three impulse shaper.

Singhose, Singer, and Seering showed that input shaping leads to much better
performance than other filtering techniques (Butterworth, notch, etc.) [70]. In particular,
they compared the impulse sequence length, residual vibration, and robustness to
uncertainties in the system model. Each method was used to shape a step command
given to a harmonic oscillator. The results clearly indicated the input shapers are
significantly shorter, yield considerably less vibration, and are far more insensitive to
modeling errors than the filters. Singhose and Singer [71] also showed that the use of

input shapers does not significantly affect trajectory tracking. These techniques could be
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applied to the macromanipulator to reduce vibration created by its motion, or applied to
the micromanipulator, or both.

Command shaping is a closely related area except typically refers to a scheme that
has a variable delay between pulses. This is important for flexible manipulators because
the natural frequencies of the system and required delay between pulses vary with
workspace location. Magee and Book [45] applied command shaping techniques to
reduce vibration induced by the motion of a rigid robot mounted on a flexible base. They
used a finite impulse response filter on the micromanipulator joint position error. A
general three term filter was developed that can produce both positive and negative filter
coefficients depending on the delay time value. Experimental work was performed using
a small articulated robot attached to a much larger, flexible robot. The smaller robot was
commanded to move under proportional-derivative (PD) control with and without the
filter. The use of the filtering method resulted in a vibration amplitude reduction of
nearly 60%. Input and command shaping techniques can be very useful for reducing
vibration created by commanded movement of the robot. However, they require
information about the system and only help in the case of vibration induced by the
manipulator itself. Vibration caused by external disturbances remains unchecked.

Xie, Kalaycioglu, and Patel [87] developed an algorithm to command the correct
macromanipulator actuator pulses at the end of a maneuver to cancel observed vibration.
This algorithm was designed specifically for the Space Shuttle Remote Manipulator
System (RMS). As noted in Chapter 1, the RMS is a realistic example of a flexible

manipulator and moving it tends to induce vibration. The technique described in this
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paper is termed “pulse active damping.” The concept is to excite vibration exactly
opposite the observed vibration so cancellation is achieved. This concept is similar to
input shaping except that it is applied to the system once the vibration is initiated and
measured. Real-time system identification is then performed to acquire the natural
frequencies and damping ratios of the system. The desired joint torque needed at the
shoulder to cancel the oscillations is applied at half the natural frequency of the vibration
(180° out of phase), thereby canceling it. Although this technique was shown to be
effective in simulation, the large inertia of the flexible arms, non-collocation of the
macromanipulator actuators and the end point, and limited actuator bandwidths could
make it challenging to implement.

Other researchers studied the use of the micromanipulator to compensate for
displacement errors caused by the macromanipulator flexibility. Ballhaus and Rock [2]
developed a scheme where the macromanipulator would move the rigid robot within
range of the desired end point position. If the desired relative tip position was within
reach, a low gain PD controller was used to command the final micromanipulator
position. If not, the rigid robot was set to a nominal position. Experimental work on two
S52-meter flexible links with a two degree of freedom rigid micromanipulator
demonstrated the effectiveness of this technique. The low endpoint gains ensured low
interactions. However, the authors also noted that with increasing gains the interaction
forces increase and can lead to instability.

Yoshikawa, Hosoda, Doi, and Murakami [94] developed an endpoint tracking control

algorithm that consists of a PD macromanipulator controller for global positioning
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combined with a dynamic trajectory tracking control law for the micromanipulator. The
micromanipulator control scheme was designed to account for the dynamics of the
system with a nonlinear state compensator, which linearizes the closed loop system. The
ability of the method to achieve precise positioning was demonstrated on a small-scale
laboratory setup consisting of a macromanipulator with two flexible links and a two link
rigid robot for the micromanipulator. However, with larger and more flexible
macromanipulators with larger amplitudes of vibration, these techniques become less

effective. In addition, the base vibration remains uncontrolled.

2.4 Control and Coupling of Free-Flying Space Robots

Another wide area of study that has some applicability to macro/micromanipulator
control has been in the analysis and control of free-flying space robots. Although some
principles are different since space robots do not have a fixed inertial base, some aspects
of this research can be applied. Some of these concepts have already begun to be applied
to some of the control techniques discussed in section 2.5.

Much work has been done to understand the dynamic interactions between a robot
and a free-floating base. Torres, Dubowsky, and Pisoni [77,78] developed a “coupling
map” as an analytical tool to describe dynamic interaction between a space manipulator
and its base. The coupling map was formed from the translational inertia of the coupled
macro/micromanipulator weighted by the stiffness of the macromanipulator. This
provides a measure of the inertia forces acting between the two bodies and a measure of

the strain energy of the flexible system. It could then be used to find paths of low energy
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coupling that would result in little interference between the robot and its base, or “hot
spots” where the degree of coupling is large. Its effectiveness was evaluated
experimentally on a three link planar manipulator mounted to a flexible beam.

Xu and Shum [88] proposed a coupling factor to characterize the degree of dynamic
coupling between a spacecraft and a robot mounted to it. The goal was to use this factor
to find robot motions that minimize the interference to the spacecraft. Jiang [28]
proposed a dynamic compensability measure and dynamic compensability ellipsoid to
quantify the degree of coupling between a robot and a flexible space structure. The
compensability measure predicted the ability of the robot to compensate for the end-
effector position error resulting from the flexible displacements. This measure was used
to find the additional joint motion that would compensate for the end effector error.

Papadopoulos and Dubowsky [56] discussed the problem of “dynamic singularities”
in free-floating space manipulators. The spacecraft is assumed uncontrolled and will
move in response to manipulator motion. They first assume a fixed inertial base at the
center of mass of the system and find the Jacobian of the end effector written in terms of
a coordinate system with its origin there (J*). When J* is not of full rank, the robot is in
a workspace location where it is unable to move its end-effector in an inertial direction.
These dynamic singularities depend upon the inertia properties of the robot and are also
path dependent. They are a function of the manipulator joint space only and do not
depend on spacecraft orientation. The singularities consist of the typical kinematic

singularities plus infinitely more dynamically singular configurations. These are similar
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to “inertial singularities” discussed later in this dissertation, where the rigid robot cannot
create an interaction force or torque in one or more degrees of freedom.

Yoshida, Nenchev, and Uchiyama [93] considered vibration suppression control of a
flexible space structure consisting of a robot mounted on a free-floating base. There are
two parts to this work: reactionless motion control path planning and a vibration control
subtask. The first subtask involves a technique called “reaction null space” where robot
trajectories are selected to avoid creating dynamic reaction forces at the base of the
manipulator. This paper considers the interactions between the two as a generic wrench,
which is a function of the robot parameters, joint velocities, and joint accelerations. This
quantity is then integrated to define the coupling momentum of the system. The reaction
null space consists of trajectories that keep the coupling momentum constant so the
interaction wrench is zero. In order for these paths to exist, the robot must have
kinematic or dynamic redundancy, a selective reaction null space (when base flexibility is
only an issue in limited degrees of freedom), or a singular rigid inertia matrix.
Reactionless paths were determined for a simulated space based robot and verified to be
effective on their experimental testbed, which consisted of a two link rigid robot mounted
on a planar flexible base.

They also noted that the orthogonal complement of the reaction null space could be
used to achieve maximum coupling, and thus could be useful for the vibration
suppression subtask. Here they assume the robot is initially stationary so nonlinear
effects are negligible. Furthermore, the flexible deflections are assumed small so the

inertia submatrices are functions of the rigid joint variables only. The vibration control
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subtask commands the rigid inertia effects proportional to the base velocity so damping is
added to the system. This is similar to concepts by Lew and Moon [35-38] and Sharf
[63] that will be discussed in section 2.5.

Yoshida and Nenchev [92] linked the field of space robots with the flexible base
manipulator control problem. They compared several types of what they termed “under-
actuated mechanical systems”, including a flexible base manipulator and a free-floating
manipulator, and pointed out similarities and differences between the two. The free-
floating robot was considered mounted to an inertia, while the flexible base manipulator
was considered a rigid robot mounted to a mass-spring-damper system. The additional
difference is the existence of a base constraint force for the flexible base manipulator.
They pointed out the ‘“reaction null space” is a common concept between the
configurations. Thus, this concept could be valuable in the case of a redundant
macro/micromanipulator to avoid or reduce disturbances created by commanded

movements.

2.5 Micromanipulator Vibration Damping Techniques

The complexity of the control schemes required for macro/micromanipulator control
reviewed in section 2.3 led to an area of research in which the micromanipulator is used
to actively damp vibration in the macromanipulator. The control scheme becomes much
less complex and the rigid robot actuators are typically able to respond more quickly to
the vibration. The rigid robot can apply forces and torques directly to tip of the

macromanipulator where the vibration is usually largest, and this also results in nearer
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collocation of the actuators and the vibration. This technique can be used to reduce

vibration that exists in the system or is induced by robot motion or external disturbances.

2.5.1 Energy Dissipation Methods

Torres, Dubowsky, and Pisoni [79] introduced a method entitled Pseudo-Passive
Energy Dissipation (P-PED) for macro/micromanipulator vibration control. They assume
locked macromanipulator joints while the micromanipulator performs its functions, so the
system can be considered a redundant rigid manipulator mounted on a highly flexible
supporting structure. The rigid manipulator is first moved into place, and then the
controller is switched to the P-PED gains. These gains are chosen to maximize the
energy dissipated by the rigid robot, essentially commanding the actuators of the robot to
behave as passive linear springs and dampers during this phase of control. This method
was shown effective in two degrees of freedom. However, this scheme is only applicable
to a limited class of problems; i.e. those that allow the micromanipulator to be used
exclusively for vibration damping when under P-PED control. After the P-PED
controller eliminates the vibration, the original system controller is used. In addition, this
technique uses measured rigid joint states only and assumes vibration in the
macromanipulator is large enough to create motion in the micromanipulator. In systems
where the actuators are highly nonlinear or demonstrate a large amount of friction, such
as hydraulic actuators, the base vibration will not be observable in the rigid robot joint
motion. Finally, it also requires the full macro/micromanipulator model in order to

determine the appropriate P-PED gains.
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Vliet and Sharf [81] introduced another energy dissipation method entitled impedance

matching (IM). First, they developed an expression for the power dissipated by the rigid

robot, 7*0 , where 1 represents joint actuation torques and ¢ represents the rigid robot
joint velocities. By assuming constant amplitude harmonic joint motion at a single
frequency, an expression for the joint velocities can be found. Then, assuming the use of
a rigid joint PD controller, an expression for the joint torques can be found and PD gains
selected to maximize the power dissipated by the rigid robot. The same limitations apply
as for the P-PED method, except no macromanipulator information is needed.

Vliet also discusses in his thesis limitations associated with the P-PED method,
further discusses the coupling map described in section 2.4, and proposes some additional
measures of coupling [80]. One is an accelerative damping measure based on the
Euclidean norm of the eigenvalues of a matrix that consists of the rigid robot inertias and
the macromanipulator stiffnesses. Another coupling measure he proposes is a modal
inertia map, which is derived from the joint torques required to hold the rigid robot in
place as the macromanipulator vibrates. He also presents in his thesis and in [81]
experimental work comparing the effectiveness of both the P-PED and IM methods in
damping vibration in a single flexible link using a three degree of freedom rigid
manipulator.

The P-PED and IM methods both assume the robot is first moved into place and then
the gains are switched to the vibration control gains. Thus, energy is dissipated from the

flexible manipulator only when the vibration control gains are used. They also rely on



the assumption that coupling effects between the rigid and flexible manipulator are large

enough to produce significant micromanipulator joint motion.

2.5.2 Inertial Damping Control

These schemes use sensory feedback of the base vibration to command the rigid
manipulator to create the appropriate inertial interactions to actively control the base
vibration. Lee and Book [11,33] developed a dual position and vibration damping
controller for a macro/micromanipulator and proved its stability. They considered the
rigid robot from the perspective that it has the ability to apply “inertial damping forces”
onto the tip of the flexible robot. Dynamics were split into slow/fast submodels. A slow
controller was used to handle the rigid joint positions while a fast controller was used for
vibration suppression. The rigid control gain matrices were carefully chosen to keep time
scale separation between the controller and the flexible modes of vibration. In this case,
the rigid controller was critically damped and the position controller chosen to be
approximately four times slower than the fundamental frequency of the flexible
manipulator. The fast controller was based on strain rate feedback of the measured
vibration. It was concluded that damping control was best because it is effective and
easier to implement than a full state feedback law.

The scheme was experimentally verified for planar vibration on a two link flexible
robot, RALF, with a three degree of freedom rigid robot, SAM (Small Articulated
Manipulator) mounted on its tip. Two links of SAM were used to damp the vibration in a

single fixed configuration selected to provide effective inertial interaction forces. Several
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items were pointed out that still needed to be addressed to extend the general applicability
of the technique. These included limits on joint torques (actuator saturation), required
joint travel, limits on actuator bandwidth, and time scale separation between the joint
controller and unmodeled flexible dynamics.

Sharf [63] recognized the interaction forces as the control variables of interest. The
basic idea was that, given the relationship between the rigid robot joint accelerations and
the interaction forces, the appropriate rigid body motion could be commanded to modify
the dynamics of the flexible robot as desired. She showed in simulation the effectiveness

of the method by commanding the desired interaction forces to be:

M5+ Cx+K,x=F, =—~(G,x+G,X) (2-4)

My, Cp, and Ky are the macromanipulator properties, x represents the flexible robot
generalized coordinates, and Fj are the interaction forces applied by the
micromanipulator. G, and Ggq are the flexible motion feedback gains. This scheme was
designed only to damp the macromanipulator vibration and would need to be followed by
a joint PD controller to dissipate any remaining energy in the system and for rigid robot
control.

Lew and Trudnowski [39] along with Evans and Bennett [40] added a flexible motion
compensator based on strain rate feedback of the flexible system motion in parallel with
an existing rigid joint PD controller. The assumption of small motion of the system

allowed linearization about an operating point. Since the micromanipulator moves
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relatively slowly compared to the fundamental frequency of the macromanipulator arm,
the flexible dynamics were assumed negligible during commanded joint motion. The
joint control loop was first closed and the flexible controller designed from the closed
loop transfer function of the system. It was shown that, as long as the flexible motion
controller is designed to be stable, the joint controller would also be stable. The vibration
compensator was designed to add damping to the first mode while limiting the bandwidth
to avoid exciting higher modes. The resulting flexible motion compensator takes the

form:

Iis k.. ]
Cf(s)_(l+71sJ[l+T2s] 3)

where T; and T, are time constants used to remove steady-state offsets and decrease high
frequency gain, respectively. Additional lead-lag blocks were also needed for proper
phase compensation. This signal was then added to the joint PD controller.

Raab and Trudnowski [58] considered an active damping technique using inertial
torques generated by torque wheels mounted at the end of a single flexible link. They
studied the flexible mode suppression only. They were able to demonstrate two degrees
of freedom of vibration damping under varying payload masses. The vibration was
sensed using strain gage pairs near the hub of the link. The resulting flexible motion

compensator took the form:

cf(s)=;% 2-6)
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where p was chosen to provide optimum phase compensation at the mid-loading point.
Both of these techniques showed promising results for vibration control in two degrees of
freedom under certain conditions.

Cannon [15] furthered the concept of inertial damping to include an inverse dynamics
model, helping reduce the variation in performance throughout micromanipulator’s
workspace. He developed and demonstrated the effectiveness of the combined position
and vibration controller in one degree of freedom on a flexible link with a single link
rigid robot mounted to its tip to provide the vibration damping. The rigid position control
scheme was chosen with stiff PD gains so the closed loop natural frequency of the system
was approximately ten times the frequency of vibration to be controlled. Acceleration
measured at the tip of the flexible link was used for feedback of the base vibration. In
this case, the resulting vibration controller took the form:

- Ki
S _296+2.6378sin6

2-7)

where X represents the measured base vibration in a single degree of freedom, 0 is the
position of the single flexible link rigid robot, and the denominator represents the rigid
robot dynamics. This control torque is then added to the total PD joint control torque.
Cannon noted three disadvantages of using this method alone: it does not reduce the
maximum amplitude of the vibration or the control effort needed, and can increase the
settling time of the joint angle response. He also noted decreased improvement in
damping as the joint PD gains are increased. He also combined the inertial damping

method with command shaping techniques to show that the combination could provide
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both vibration damping and amplitude reduction. The conclusion was that the use of the
inertial damping technique does not preclude the use of another control technique if an
additional performance measure, such as vibration amplitude, is a concern. These
techniques were also later applied to a macro/micromanipulator at Pacific Northwest
Laboratory [16] and showed similar improvements in performance.

Loper and Book [12,42] extended the inertial damping scheme to two degrees of
freedom of vibration. They used the same control technique as Cannon except
accelerations were measured in two directions and two links of a three degree of freedofn
robot were used. The controller took the form of equation 2-7, except accelerations in
two directions were used and the rigid robot dynamics were modeled using two links of
the robot. This technique was shown experimentally to be effective for planar vibration,
again under certain conditions.

Lew and Moon [35-38] have recently considered the more general case of a robot
attached to a passive compliant base, but only allow three degrees of freedom of base
translation. The scheme compensates for base vibration while following a desired
position. Real-time estimates of the nonlinear rigid body dynamics are computed from
joint accelerations calculated from measured optical encoder position data. The coupled

rigid body equation of motion (last row of equation 2-3) can be written as:

B.(0)0+N@©8,0,q.9)=7 (2-8)
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Again, instead of the notation used in his paper, notation used here is consistent with the
notation introduced in equations 2-1 and 2-2. N represents the rigid robot nonlinear,

gravitational, and coupling terms. The new rigid robot command torque becomes:

T=1,-B.(0)0 +u (2-9)

where 1, represents the previously commanded joint torques, B, is the estimated rigid

robot inertia matrix, and u is the new rigid robot control input. Using Equation 2-9 in 2-8
and 1, to estimate the nonlinear terms, the new equations of motion (equation 2-3

rearranged) become:

[Mb +M,,(q,9) Mb,(q,o)][ffHCb*f +Cbr(‘1"1’9”’)}+{Kb O}m =m (2-10)
0 B.(0) ||§ 0 0 06 J Lu

A two-time scale controller is then applied to the partially decoupled models with a fast
controller for rigid link position and a slow controller for the vibration controller. The
new rigid robot control input, u, is commanded so the joint accelerations are proportional
to the flexible base velocity and damping is added to the system. Note to find the
required joint control input, u, according to equation 2-9, requires the joint accelerations,
which may be noisy and difficult to acquire real-time if only joint position measurements
are available.

Of course, another area that is only briefly mentioned here is hardware modifications

such as smart structures or passive damping, which may be the only solution to certain
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problems. One example may be if the controlled motion is fully prescribed and no
deviation is allowed for path modifications or to damp the vibration. Another example
would be if the vibration is not controllable at the point of interface with the rigid robot
or if the vibration is not observable (the micromanipulator or sensors can only be placed
at a node point). Other cases could occur when the vibration controller is designed based
on a reduced order model and fails to compensate for excitation of higher modes in the
system. In these cases, another option may be to introduce a dissipation mechanism to

enhance damping rather than modify the control loop [9,10].

2.6 Limitations of Previous Research

Control of macro/micromanipulators has been investigated using many different
techniques. As noted previously, inertial damping schemes using the micromanipulator
to damp the vibration is an attractive compromise between control system complexity and
system performance. These schemes have been developed and demonstrated for a very
specialized class of systems in unique configurations. Some of the limitations of the
research performed so far in this area are:

1. Full macromanipulator flexibility (translational and rotational) has not been
considered. Lew and Moon [35-38] have taken the more general approach of considering
the macromanipulator as a compliant base, but limit the motion to only translational
motion, which greatly simplifies the problem. The space robotics work by Yoshida et al
[92,93] considers the case of a robot mounted on a floating base and has lent some

valuable theoretical work to this area, but detailed work is yet to be seen.
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2. The variation in performance throughout the workspace has not been fully
addressed. In particular, there are locations in the workspace where the ability of the
manipulator to generate effective interaction forces and torques is diminished. There has
been some work in space robotics by Torres et al [77,78] and Vliet [80] that begins to
address this issue. A rigorous investigation of these singularities, similar to the work
done by Papadopoulos and Dubowsky [56] for space dynamic singularities, is lacking. In
addition, there has not been a method proposed to address how to use the variation in
performance to improve the effectiveness of the damping scheme.

3. Most of the above schemes have assumed ideal system modeling for development
of the vibration control scheme. Lew and Moon [35-38] looked at estimating nonlinear
and coupling effects but practical implementation of this method could become
challenging. There still needs to be a detailed investigation of the coupled system model
as well as an evaluation of the robustness of the control scheme to modeling errors.

4. Few hardware demonstrations have been performed on realistic
macro/micromanipulators. ~ Those that have been were on robots in specific
configurations and with only one or two vibrational degrees of freedom. In addition, the
only two degree of freedom demonstrations have been on robots that have naturally
decoupled inertial damping performance. The effects of (1-3) may become even more
important with additional degrees of freedom.

5. Methods to maximize the amount of damping provided by the vibration controller
have not been addressed. In addition, practical limitations such as actuator saturation and

limits on joint travel have not been addressed. In fact, very little guidance is available on
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choosing the vibration control gains or establishing limits on gains that consider these
factors.

6. The impact of the vibration damping controller on the position controller has not
been systematically analyzed. Some researchers have chosen to consider the vibration
problem separately [12,15,63,81,93] while others have carefully chosen the position
control and vibration control loops to have time scale separation [11,33,35].

Of course, there is plenty of room for additional work in this area. This dissertation
secks to address some of the major issues remaining in the field. In particular, this
research includes:

1. Consideration of the multi-degree of freedom (DOF) macro/micromanipulator
control problem by studying the analogous problem of a rigid robot mounted on a flexible
base.

2. Investigation of the variation in performance throughout the workspace and
inertial singularities, or locations in the workspace where the rigid robot loses its ability
to create effective interactions in one or more degrees of freedom.

3. Development of a control scheme that provides active base vibration damping in
parallel with position control and establishment of appropriate vibration control gain
limits.

4. Simulation and experimental work on a realistic multi-degree of freedom

macro/micromanipulator.
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CHAPTER III

FLEXIBLE BASE MANIPULATOR
MODELING

3.1 Introduction

This chapter describes modeling of a rigid robot mounted on a flexible base. The
flexible base represents a multi-link macromanipulator with locked joints. The rigid
robot will provide the fine-tuned end point position control. In this research, it is also
used to damp vibration in the flexible base. Thus, it is especially important to
characterize the dynamic interactions between the macro and micromanipulator and in
order to do this the system needs to be modeled.

First, a recursive Lagrangian approach is described which is used to model the
macromanipulator. This approach is commonly used in flexible robot modeling and
hence is only briefly reviewed here. Next, the micromanipulator model is developed
using a recursive Newton-Euler algorithm. The important dynamic effects that need to be
characterized are the required joint torques to operate the robot and the interaction forces
and torques acting at the base of the robot. The joint torque equations are the same form
as those for a fixed base rigid robot with additional coupling terms due to the base

motion. The interaction forces and torques are explicitly solved for and are the subject of
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further investigation in Chapter 4. Chapter 5 then investigates how to control these

interactions to damp the base vibration.

3.2 Flexible Base Model

The flexible base represents a multi-link flexible manipulator with locked joints. The
method chosen here is a recursive Lagrangian formulation using a finite number of
assumed modes, which is applicable to an n-DOF flexible link manipulator. The
advantage of this method is its ability to include flexible link deformation. This method
is well documented and more detailed descriptions may be found in the paper by Book
[8] and others who have used this method to model flexible manipulators [15,32,34,42,
52,53,62,72]. However, other methods may be used provided they yield inertia and
stiffness properties and adequately capture the significant dynamics of the
macromanipulator. Modal damping estimates are also often added and could be based on
experimental results or estimated from material properties.

The key difference between a flexible and rigid robot is its continuous nature. , Both
rigid joint motion and elastic deflections govern the motion of a flexible robot, so it
theoretically has an infinite number of degrees of freedom. However, it is necessary to
develop a more manageable model that approximates the system, yet adequately captures
the significant dynamics. The approach described here begins with assuming an
appropriate number of modes to model the flexibility in each link for each degree of
freedom. The position of an arbitrary point on each link is composed of summations of

the assumed mode shapes multiplied by the generalized coordinates. These are used to
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form the kinetic and potential energy of the system and with Lagrange’s equations yield
the equations of motion of the system. It is assumed for this work the resulting
macromanipulator model can be linearized about an operating point, i.e. at a fixed joint
configuration and neglecting the flexible generalized coordinates in the inertia, stiffness,
and damping matrices. It is further assumed the flex model is developed referenced to an
inertial coordinate frame coincident with its last link, or at the base of the
micromanipulator. The resulting matrices, although constant at a given locked joint
configuration, will generally be fully coupled and the generalized coordinates will only
include the flexible states.

It is assumed each link could have two degrees of freedom of transverse vibration
plus torsion about the z-axis (Figure 3-1) and that axial vibration is negligible. Thus,

" 3

there will be a total of iz=l ;1 m ;i equations of motion and generalized coordinates,

where n is the number of macromanipulator links, k represents vibration in the x, y, or 6,

direction, and mj is the number of assumed modes for the k™ direction of vibration of the

i™ link.

3.2.1 Assumed Modes

The first task is to assume an appropriate set of modes for each degree of freedom.
The mode shapes could be based on many methods, such as Ritz series, finite element
models, or analytical results for continuous systems [24]. The chosen set of modes only

needs to be linearly independent and satisfy the system geometric boundary conditions
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Flexible Link Model Notation

[13]. A reasonable method of estimating assumed modes for flexible manipulators is
based on Euler-Bernoulli, or classical beam theory. In order for this to apply, the
centroids of each link must lie along the z-axis in the undeformed state. In addition, the
cross-sectional dimensions must be small relative to the length of the link and the cross
sectional shape should vary little along the z direction [24]. These are often reasonable
assumptions for a macromanipulator, which is characterized by its long, lightweight
links. Transverse and torsional vibration mode shapes for flexible beams subject to
common boundary conditions may be found in many references, including Ginsberg [24],

Meirovitch [49], Rao [59], and Weaver, Timoshenko, and Young [83].
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The governing differential equation of motion for transverse vibration of a uniform

beam [83] is:

4
El 0 u(z,t)

2
L Aa u(z,t):
z

= 0 (3-1)

+p

u(z,t) describes the resulting vibration in the x direction (or v(z,t) in the y direction), as
defined in Figure 3-1, for the i link. E is modulus of elasticity, p is mass density, A is
the cross-sectional area and I is the moment of inertia of the link about the x or y axis (all

assumed constant). Using separation of variables,
u(z,t) = Y. 4,()T () (3-2)
j=1

a basis set of mode shape functions can be found of the form:
¢, =C,sin(B;z)+C,, c08(B,z) + C,y sinh(B,2) + C,, cosh(5,2) , (33)

C;s and ;s are determined from the eigenvalue problem appropriate for the system’s
boundary conditions. m;; should be truncated to a reasonable number of modes to
adequately model the flexible dynamics without unnecessarily increasing model size and
complexity. Some researchers have found that two or three modes suffice to represent
flexible dynamics on relatively uncomplicated systems [13], based on the low amplitude
of the higher frequency modes.

Common boundary conditions used for modeling flexible manipulators are fixed/free
or pinned-pinned, but other boundary conditions may be more applicable depending on

the specific application. For example, fixed/free boundary conditions are:
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¢;(0)=0 (no motion at attach point)

d¢;(0)

dz

d’4,(0)
dZZ
dz3

=0 (zero velocity at attach point)

=0 (no bending moment at attach point)

=0 (no shear force at attach point) (G4

Using these boundary conditions in equation 3-3 results in a set of 4x4 equations that

yield the following eigenfunctions, or assumed modes:

cos(B,L)+cosh(f,L) )
soqp Dot °°Sh(/”fz)]}

C; arechosen suchthat @, =1atz =L (link length) (3-5)

¢,=C, {sin(ﬂjz) —sinh(f3,z) +

The first four natural frequencies for transverse vibration of a beam with fixed-free

boundary conditions are [83]:

B.L=1875104
B,L = 4.694091
B.L =17.854757
B.L=10.995541 (3-6)

The other issue that could be important for flexible manipulators is torsional beam
vibration. Assuming a uniform shaft with uniform cross section, the free vibration is

governed by [49]:

G 3% (z,1) _ 8°0,(z,1)
p 0z’ ot?

(3-7)

where G is the shear modulus of elasticity (assumed constant) and 6, describes the

rotation of the flexible link about the z-axis. Again, separation of variables allows

solving for the mode shapes, which take the form:
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c=\/§ (3-8)
P

The frequencies again depend on the boundary conditions and for fixed/free boundary

x;(z)=A;cos

conditions, the mode shapes take the form:

(2]+1)71'Z

Y ) (3-9)

x ,;(z) = C;sin(

The motion of the i link can now be described as a summation of the assumed

modes and associated generalized coordinates.

My

u(z,,t) = jZ:://’,, (z)py (1)

)= 220 20, )

ERENTON0 (3-10)
u; and v; are the resulting i link deflection in the x and y directions and 6,; the torsional

rotation about the z-axis. pj;, g, and s are the time-varying amplitudes of mode j of link

1in the x, y, and 0, directions.

3.2.2 Kinetic and Potential Energy

Next Lagrange’s equations will be used to extract the inertia and stiffness properties
of the macromanipulator. First, kinetic and potential energy expressions need to be
formed for each flexible link. The kinetic energy terms represent distributed translational
and rotational energy, while the potential energy terms represent elastic bending effects

and gravity.
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First, an arbitrary position on the macromanipulator needs to be described relative to
the fixed inertial coordinate system X.;, Vi1, Ziq in Figure 3-1. The coordinate
transformation between links involves both the rigid joint transformations (A;) as well as
link deflection transformations (E;). Book [8] described a practical means of doing this
by using 4x4 homogeneous transformation matrices to describe the position and
orientation of one coordinate frame with respect to another.

Using the notation introduced in his paper and referenced to the fixed inertial
coordinates at the base of the macromanipulator, the position of a point on link i can be
written as:

b, = Wh!

r.
h; = point referenced to fixed frame = 1‘}

h; = point referenced to link i frame =| (3-11)

u; and v; are as defined in equation 3-10 and z; is the distance along link i. The
transformation W; can be split into rigid and flexible components, as defined in Figure 3-
1, or:

W =W_E, 4 ¢-12)
For this research, A; is assumed fixed at a specific macromanipulator joint configuration.
E;, however, must include both link deflections as well as rotations. The rotation that
occurs between 1 and i-1 is due to the small rotations at the tip caused by the transverse

vibration as well as the torsional vibration.
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Assuming small rotation angles, the direction cosine matrix simplifies and the

complete link transformation matrix can be written as:

1 0 00 0 6, 0, u
1 0 0 6, 0 -6, v
El.= O + zi xi vl (3_13)
001 1L||-6, 6, 0 0
00 01 o 0 0 0],
where L; is the length of link i. The assumption of small rotations gives:
20y, (2)
0.(z,t) ~ zaj—zqy(t)
j=1 i
< 0¢;(z;)
ayi(zi)t)zz a’ p;(®) (3-14)

= 0z

However, if the macromanipulator has multiple links, it will be more useful to write
the position vector referenced to a fixed coordinate system coincident with the last link of
the macromanipulator (X,, yn, zn) in its equilibrium position (E=I). Thus, the position

vector can be found from:

h, = 4"'Whi = m (3-15)

0 is found the same way except using the rotational terms only in E; (3x3s). The potential

and kinetic energy of the system can now be written as:

T = gB—p,-Ai f" fff,dz,} + ZIBI f" éféidziil

21 L 00, | L, 00, 2] L 00
V=)—EI 6 | (—%%dz, +Y —EI_ | (—2)%dz, +Y —G.J, | (=%)*dz, 3-16
g Bl [ G e+ 23 B [ (0 s AN CED
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where:

p = mass density

A = cross-sectional area

E = modulus of elasticity

I,,1, = area moment of inertia of the cross sectional area computed about the x or y axis

G = modulus of rigidity
J = polar area moment of the cross sectional area computed about the neutral axis

One of the benefits of this method is that as much detail can be included in the equations
of motion as desired. Here many of the assumptions that have been used and justified by
other researchers have been used to pare the equations of motion down to the most
significant contributions [8,24,34,46,52,72,83].

Now Lagrange's equations can be used to derive the equations of motion.

d {GTJ or o _qo (317

ai\5, ) oq, " o,
Q; are the nonconservative generalized forces applied to the macromanipulator
corresponding to the generalized coordinate ;. In this research, these are the interaction
forces and torques created by the micromanipulator. The generalized forces are

determined from the virtual work done by the micromanipulator, or

oWork =F,.0r +7,.60 . (3-18)

The infinitesimal displacements and rotations at the tip of the macromanipulator are
given by equation 3-15 evaluated at z=L;. The partial derivatives of the resulting
infinitesimal displacements and rotations are taken with respect to each generalized

coordinate to find the generalized forces.
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The final equations of motion take the form:
M@q+C(@q+K(@q=Q (3-19)
where it is assumed the mass, stiffness, and damping matrices can be linearized about a
nominal operating point. Since the joints of the macromanipulator are locked, q
represents the flexible states and consists of a finite number of modes of interest. The
mass, stiffness, and damping matrices can be linearized and assumed approximately

constant about an operating point, §.

3.3 Flexible Base Rigid Manipulator Model

In order to better understand and analyze the coupling effects between a rigid
manipulator and flexible macromanipulator, the problem was generalized into a rigid
manipulator mounted on a flexible base (Figure 3-2). The base represents inertia,
stiffness, and damping properties of a distributed parameter system, modeled as discussed
in section 3.2. There are two goals of this portion of the work. The first goal is to
develop the equations of motion in order to model and simulate the interactions between
the robot and its flexible base. The second is to investigate these effects in order to
determine which are most significant. The analysis of the interaction forces and torques
is discussed in Chapter 4.

A recursive Newton-Euler method, commonly used to develop joint torque equations
for rigid robots [18,48,61], was used to find the interaction forces and torques. Other
methods are also valid if they allow solving for the interaction forces and torques that act

at the base of the micromanipulator. It is assumed that the origin of an inertial coordinate
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Figure 3-2
Flexible Base Rigid Robot

system is located at the base of the rigid robot, or at the tip of the undeformed
macromanipulator. The elastic states of the macromanipulator affect the rigid robot by
moving its base in Cartesian space (Figure 3-2). In developing the equations of motion,
these become boundary conditions on the rotational velocities and translational and
rotational accelerations of the first link and are then propagated forward to the other
links. Then, a backward recursion is used to solve for the forces and torques acting on
each link, with the final set giving the forces and torques acting between the rigid robot
and the macromanipulator.

The assumptions made in the development of these ideal equations of motion are:
1) No contact forces or moments are applied to the tip of the micromanipulator
2) Off-diagonal products of inertia are negligible

3) Position vectors for off-axis distances to link centers of gravity (CGs) are negligible
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4) Friction effects and other nonlinearities are not modeled
5) Rotor inertia effects are not included.
If actuator dynamics dominate the rigid robot performance, an alternate form of the rigid
robot model may apply. However, the interaction forces and torques described by this
model will still be valid.

First, consider for the moment a single link rigid robot mounted to a flexible base.
The base is free to move in any direction. The arm rotates about the x-axis as defined in

Figure 3-3 (out of the page).

j}’ey’e'y < | I

x,0._.,0

X ¥
£,0,,6,
Figure 3-3
Flexible Base Single Link Rigid Robot

The acceleration of the center of gravity of the link is given by:

A, =25+ U XTI+ @ X (@ XTep)

where:

a, =X+ yj+ (¥ + g)k

w=(6,+0) +6,]+6k

a=(0,+8) +6,j+0.k (3-20)
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where:

ag = acceleration of the center of gravity of the rigid link

a = acceleration of the base

g = gravitational constant

o = angular velocity of the link

o = angular acceleration of the link

rcg = position vector from the base to the center of gravity of the link

Now the interaction forces and torques at the base of the link can be solved for:

Fir=mag
I.(6,+8)

Ty = —Teg X Fp + Iyyé'y (3-21)
1220”2

where m is the mass of the robot arm and L, Iy, and I, are moments of inertia of the link

about the respective axes. Just for this one link case, the interaction forces take the form:

1o ofx] [o 0 —re6 —rs0)8.] [ 0 o o o &
01 0|p|+ rB|+re® 0 0 |8, |+|-rs0 0> +|-rs0 0 -rsO H'yz
Fp, 0 0 112 rs@ 8 0 0 gz rel re@ rc6 0 3'22
Fy |=m g ) (3-22)
F, rs@ —rcd 0 9x9 y 0 rs@ -rcO 9,,9 0
+ 0 0 -rc@| 606, |+|-2rs0 0 0 160][+0
L 0 0 s g'ye'z 2rcd 0 0 66| L&

Here the abbreviated form for the trigonometric functions, ¢6 and s6, are used to
represent cosd and sin6, as will be the case for the remainder of this document. Using the
notation for the macromanipulator in the previous section and equations 3-10 and 3-14,

the displacements and rotations at the tip of the macromanipulator can be written in terms
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of the generalized coordinates, q. Thus, these equations can be written in more compact

form as:

[F,F}:{c,(e) B,(6) }PHW) } P +[Nfc1(9) }qz .\ Nﬁz(e,e) qJ{Gf@} (3.23)
T Cro(a) Bro(e) 0 Nro(e) NrOcl(a) Nzoc2(630) Gro(e)

The goal of the control scheme is to control the interaction forces and torques via the
rigid robot to damp vibration in the macromanipulator. From the above reduced

equations of motion, it is apparent the effects that directly influence the interaction forces

and torques are given by:

Fil L1 2@ 15 1 VO e (3-24)
7] [Bo@®)] [ No0)

The generic algorithm is similar to the well-documented Newton-Euler method for
deriving the equations of motion for a rigid robot, except in this case the interaction
forces and torques are required in addition to the joint torque equations. The notation
used below is consistent with that found in Sciavicco and Siciliano [61] where the more
efficient method of referring the vectors to the current frame associated with link i is
used. The algorithm uses forward recursions, which propagate the velocities and
accelerations of each link forward to the next link. This is followed by backward
recursions, which solve for the forces and torques acting on each link starting with the

force and moment applied to the end effector (assumed zero for this work).
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Using parameters as defined in Figure 3-4, the forward recursions take the form:

i

o R 0 +6,z,]
i (R:_I)T[a)ii:ll + éizo + otw::ll X Zy]
) {(R;‘")Tco:::

{(R:“)Tﬁ:::m: x rh+ol x (@ x 1)

i

i

pi=pi+a] x red+o x (o x rc)

R (B +dizy) +2dw) x R zy+ 6] x 1l + o x (0] x

Ti1
“Ti-1
- 7z ®
“1i-1
< -
I'C,'l
\4 Xj-1
Figure 3-4
Notation Used for Recursive Newton-Euler Algorithm
where:
0
z, = unit vector of joint 0 axis =| 0
1

@, = angular velocity of link i

@; = angular acceleration of link i
b = linear acceleration of the origin of frame i

D.; = linear acceleration of the center of mass of link i
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The backward recursions take the form:

i~ Rii+x'f;'+1 + m,pé,
T = R ¥ R fo X 7€l = f; x rej+ Lo + @] x Loy
(BT 2 revolute
B fTRTY z, prismatic

Jf; = interaction force between links i and i-1

i

T,; = interaction torque between links i and i-1
7, = generalized joint actuation torque for link i (3-26)

Boundary conditions of the tip velocities and accelerations of the macromanipulator are
applied to the first link and propagated through the forward recursions. It is assumed that
the micromanipulator is not in contact with any object so the forces and torques applied
to the tip of its last link are zero.

The equations of motion take the general form:

F, =B,(0)0+N,(0,60,)+C,(0)i +N,.(q.4,0.0)
Ty =By (0)0 +N,,(0,0,0,)+C,,(0){ +N,,.(q,9,0,0)
7=B (0)0+N,(0,00)+C.(0)§ +N,(q,4.0,0) (3-27)

O represents the rigid robot joint variables and q represents the flexible base generalized
coordinates. By, B, Cr, and Cy represent inertia effects of the micro and macro
manipulators, respectively. Br and By are particularly important because they represent
the controllable rigid robot inertia effects. These matrices are, in general, not symmetric,
or positive definite (but the inertia matrix for the complete coupled system is, of course).
The remaining terms in 3-27 represent nonlinear and gravitational effects. The third

equation is the typical joint torque equation with extra coupling terms. Often actuator

dynamics or other effects dominate the robot performance, so this equation could take
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other forms. However, for this work it is assumed the relationship between the joint
actuation torques and joint positions is known and controllable.

These equations were written in symbolic form in Matlab [21]. The
macromanipulator tip angular velocities, angular accelerations, and translational

accelerations are the boundary conditions and are given by:

o, @, X
wy = o, L@y = o, Do =|y (3-28)
w 0] g+z

z z

These were used in equation 3-25 and propagated forward to each link, and then
equations 3-26 were used to find the interaction forces and torques and joint actuation
torques. These equations were developed for anthropomorphic, spherical, wrist, and
anthropomorphic/wrist robot configurations and many are included in Appendix A. The
ability of this method to predict the interaction forces and torques was verified
experimentally with a six-degree-of freedom force/torque sensor mounted at the base of a

three DOF anthropomorphic rigid robot.

3.4 Coupled Macro/Micromanipulator Model

The micromanipulator is considered in this work to apply the interaction forces and
torques to the flexible base. The flexible manipulator, given by equation 3-19, is now
written with translational and rotational effects considered separately. The generalized
forces applied by the micromanipulator are given by 3-18. Here, for the sake of
generality, the interactions are assumed applied directly to the flexible base. In this case,

the flexible manipulator equations of motion become:
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X X, | [K 0 F
|:M 0} N +|iC 0j| . |: }{ :|=_|: IFi| (3-29)
o JJd,| [0 cllé, | |0 k] T,
where x¢ represents the coordinates governing the translational motion of the flexible base
and Or represents the coordinates governing the rotational motion of the base. The

interactions commanded by the rigid robot motion are given by equations 3-27.

These are rewritten here to explicitly to identify a few key terms:

F=B.(0)0 +N,(0,00)+4,0)%,+B, 00, +N(x,,%,.0,,0,.0,0)
T =Bo(0)0 + N, (0,00 )+ A,,(0)%, +B,, 0, + N, o(x,,%,,0,,0,.0,0)
T=B,(0)0 +N,(0,00 )+ B;(0)%, +B,(0)8, +N,(x,,%,,0,,0,0,0) (3-30)

Substituting 3-30 into 3-29 and rearranging yields the coupled equations of motion:

M+4,0) B,6) B®)|%X| [C 00 K 00 xf
A,0)  J+B,,0) B,@®)|0,|+0 C 0 +0 K, 0 ,
B3(6) BR@® B@® |4 | [0 00 0 00
N(aoé)+ N, (x,%,,0,0,0,6) | ro
N, (0,00)+N, (x,,%,.,0,,0,0,8)|=0
N,(e,oioj)+Nm(x,,x,,o,,9,,o,é) 4

(3-31)

The goal of the next chapter is to investigate these equations of motion more
thoroughly and, in particular, study the interactions directly controllable by the rigid

robot.
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CHAPTER 1V

INTERACTION FORCES AND TORQUES AND
INERTIAL SINGULARITIES

4.1 Introduction

This chapter addresses the interaction forces and torques acting between the rigid

robot and its flexible base. Recall these are given by:

F,=B,0)0+N,0,00,)+C,(0) +N,(q,4,,0)
T =B @) +N,,0,00 )+C,,0) +N,.(q.4.0,0) @1)
The focus of this chapter is the directly controllable rigid robot effects, or those terms that
are only functions of 0 (the first two terms in each equation). For completeness, the more
detailed equations of motion for each robot may be found in Appendix A
(anthropomorphic, spherical, wrist, and anthropomorphic/wrist robots). The notation and
coordinate systems used are shown in Figures 4-1 through 4-4. The robot configurations
are defined consistent with those described in Sciavicco and Siciliano [61] for
anthropomorphic and spherical arm robots and spherical wrist robots, with one exception
noted in Figure 4-1. In addition, terminology consistent with McGill/King [47] will be
used where centripetal refers to accelerations and centrifugal refers to forces.
First, the inertia forces and torques are discussed, or those generated by accelerating

the links of the rigid robot. An important part of this work involved investigating
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“inertial singularities,” or regions in the workspace where the robot loses its ability to
create inertia interactions in one or more degrees of freedom. These are important
because the control scheme inverts the inertia matrix, which presents a problem when
these matrices become singular. However, these singularities also represent physical
limitations, so it is important to understand where and why they occur and, if possible,
devise ways of avoiding operation in or near these regions.

Next, the nonlinear centrifugal and coriolis forces and torques are discussed. There
are regions in the workspace where these can become large during multi-DOF actuation
of the joints. These effects are driven by the joint space configuration of the robot and
the joint velocities. In most configurations, the ratio of inertia to nonlinear effects is
large. However, in some configurations the nonlinear effects can interfere with the
inertia effects. If the amplitude of joint motion is limited appropriately, this ratio can be
improved. The remainder of the interaction terms involve combined rigid robot and
flexible base coordinates and are not discussed further here other than to note they are
important for accurate modeling. Finally, the interaction forces and torques were
developed using the Newton-Euler method described in chapter 3. However, a more
efficient approach to find the inertia and nonlinear rigid force effects is presented here.

The work presented in this chapter leads to two important conclusions, which will be
used in the development of the control scheme. First, since the inertia effects are
functions of the joint configuration, this variation in performance may be used to ensure
the robot operates in joint space configurations better suited for inertial damping. This is

possible because there are normally multiple inverse kinematic solutions corresponding
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to a given end point position (provided the robot is not operating at a kinematic
singularity). A performance measure to predict the rigid robot's ability to create effective
multi-DOF inertia interactions is introduced here. It can be used to choose better inverse
kinematic solutions for inertial damping and will become an important part of the
performance index discussed in Chapter 5. Second, if the joint amplitudes are limited
appropriately, the ratio of inertia/nonlinear effects can be improved. The amplitude of
motion can be controlled by establishing proper limits on the vibration control feedback
gains. The control scheme and feedback gains will be discussed in Chapter 5. The
adequacy of these models in predicting the interactions was tested on a three DOF
anthropomorphic robot with a six-axis ATI force/torque sensor mounted to its base.

These results will be presented in Chapter 7.
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Figure 4-1
3 DOF Anthropomorphic Robot
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6 DOF Anthropomorphic Robot with Wrist
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4.2 Inertia Forces and Torques and Inertial Singularities

The inertia forces and torques are functions of the joint configuration of the robot and
joint accelerations. The ability of three typical robots to generate interactions is
examined in three degrees of freedom since this is easily visualized. Using the notation
defined in equation 4-1, B¢ and B are inertia-like matrices but they are, in general, not
square, symmetric, or positive definite (the inertia matrix for the coupled system, B; from
equation 3-27, is). These matrices are particularly important for two reasons. First, the
rigid robot needs to have enough inertia to apply effective interaction forces and torques
to the macromanipulator. The ratio of the rigid inertia to flexible inertia effects becomes
an important part of the performance index. Second, there are locations in the workspace
where these matrices become singular, which presents a problem since they are inverted
in the control scheme. However, the more important consideration is that these “inertial
singularities” represent physical limitations in that an inertia force or torque cannot be

created in one or more degrees of freedom.

4.2.1 Performance Measure for Inertial Damping

The following performance measure provides a quick and accurate measure of the
ability of the rigid robot in generating effective interaction forces and torques and

assesses its variation throughout the workspace:

|B7(6)B,(0).

B,(8)B,,(0)| (4-2)
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Alternately the combined ability of the robot to generate interaction forces and torques

may be evaluated by assessing:

|B”(6)B(0)
| %@ (4-3)
B‘L’O (0)

First, it is important to note a few points about these matrices. They are real but not,
in general, square, or symmetric and thus will not have real eigenvalues [73]. However,
B'B will always be symmetric and its determinant will be positive. Singular value
decomposition is a related technique noted for its usefulness in determining how near a
matrix comes to becoming singular. It has also been noted that the use of only the
minimum and maximum singular values is overconservative [23]. Thus, the determinant
of B'B, which is the product of the singular values, was chosen for the performance
measure. In addition, although this dissertation does not specifically address cases of
underactuation or redundancy, the proposed measure may be extended to those cases
since there is no requirement that the matrices be square. Finally, the determinant of a
matrix can much more easily be evaluated than eigenvalues or singular values, which is
particularly important if the performance measure will be used in real-time. This
measure not only provides an indication of how these effects vary throughout the
workspace, but also shows regions where full multi-DOF inertial damping capability is
not possible. The goal here is to use this performance measure to choose robot joint

space locations where the inertia effects are large, whenever possible.
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4.2.2 Interaction Force Performance

Consider the three degree of freedom anthropomorphic robot shown in Figure 4-1.
Note this is a special case where three joints create interactions in three degrees of

freedom. Hence the inertia force matrix is square and given by:

-s,(Ac, +Bc,;)  —c(As,+Bs,;) -Bcs,,

B, =| ¢(4c,+Bcy;) —s,(As,+Bs,;) —Bsisy, (4-4)
0 Ac, + Bc,, Bc,,
where:
A=mpr;+msa,
B=m3r3

m;=mass of link i
a;=length of link 1
ri=distance to the center of gravity (CG) of link i

The determinant allows an evaluation of the singularity points and is given by:
|B,|=—4Bs,(4c, + Bc,,) (4-5)
The matrix becomes singular whenever s3=0 or Ac,+Bcy3=0.
The variation in force performance, as quantified by the performance measure in
equation 4-2, is shown in Figure 4-5 over a reduced range of joint motion in order to help

clarify the presentation. Cases 1 and 2 refer to specific regions in the workspace that will

be referred to later.
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Force Performance - Anthropomorphm Robot
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Figure 4-5
Force Performance — 3 DOF Anthropomorphic Robot

The inertia matrix for the spherical robot and its determinant are given by:

—4c-Bss, Bee, mgs,

B, =|-As+Bcs, Bsc, mss,
0 —-Bs, mg,
3 2
iBf| ==msS)h
where:
As=m2r2+m3d2

B=mjsr3 (note r3 is not constant)
di=length of link i
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Its variation in performance is shown in Figure 4-6.

Force Performance - Spherical Robot
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Figure 4-6

Force Performance — 3 DOF Spherical Robot

The equivalent matrix for the three DOF wrist is given by:

~ 4,555 ch4€5 0

Bf = ch4ss AwS4C5

0 —-4s O

where:

Ay=msrs+(ds+re)mg
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Its variation in performance is shown in Figure 4-7.

Force Performance - Wrist Robot
1 v4 T T T T T T T T

Cases 1 and2

0 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

0,°
Figure 4-7
Force Performance — 3 DOF Wrist Robot

The regions with very low values represent locations in the workspace where the
robot cannot produce inertia forces in one or more degrees of freedom. These will be
termed “inertial singularities.” These singularities consist of some of the kinematic
singularities plus additional dynamically singular configurations. The two general cases
are annotated on Figures 4-5 through 4-7. The singularities are driven by the columns of
B when the matrix contains:

1) Linearly dependent columns, which indicate that the inertia forces created by two or
more links are parallel. For example, this singularity occurs for the anthropomorphic
robot when the last two links are aligned. This also corresponds to a kinematic

singularity, when the velocities generated by the two links are parallel. For the




2)

spherical robot, this occurs when joint 2 is at 0° or 180°, when both links 1 and 2
create velocities (and inertia forces) in the horizontal direction. All of the three DOF
spherical robot singularities are the same as the kinematic singularities.

A column of zeros, which indicates a location in the workspace where the motion of a
joint cannot create any inertia interaction forces. This singularity occurs when the
CG of the robot is aligned along an axis of rotation. For the anthropomorphic robot,
this occurs when the system CG is aligned along the z-axis, so link 1 can produce no
interaction inertia forces. In the spherical robot, this will occur if link 3 is aligned
along the axis of joint 2, which renders a middle column of zeros. This singularity
can be avoided by requiring some minimum length to link three. These are, in
general, different from the kinematic singularities. The inertial singularities depend
on the location of the CG of the system. If it is known where these occur, they can be

avoided by not operating in those joint space configurations.

In the case of the anthropomorphic and spherical robots, link 1 has no effect on the inertia

force performance because it cannot affect the CG of the system.

Given the configuration shown in Figure 4-3, the wrist is always singular in three

degrees of freedom. Its last link cannot create any inertia interaction forces since its axis

of rotation is along the main link of the robot. In addition, only the orientation of joint 5

affects the inertia forces since it is the only joint that affects the CG of the system. It is

also interesting to note the wrist singularities occur when the arm is straight down or

straight up (0s=0° or 180°). This is a combination of cases 1 and 2 since these are

kinematic singularities and the CG is aligned along joint 1. Note the extremely small
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force magnitudes generated by the wrist, indicating its use alone would not be very
effective at creating interactions.

It is also worth mentioning another type of singularity, which corresponds to a row of
zeros in the matrix or two parallel rows. This singularity occurs in conjunction with one
of the other singularity configurations discussed above. For example, if the CG of the
anthropomorphic robot is oriented along the axis of rotation of joint 1 (case 2), an inertia
force cannot be produced in the out-of-plane direction. In this case, two of the rows can
become parallel or one can become a row of zeros, depending on 0;. Two other types of
row singularities can occur in conjunction with the kinematic singularity at 6;=0° (case
1). When joint 2 is at 90° (straight down) and joint 3 is at 0°, no inertia forces can be
produced in the z direction and the third row becomes a row of zeros. Finally the
orientation at 6,=0°, 6;=0° can result in a row of zeros in either the x or y direction,
depending on 6;. These are easily identified using the proposed performance measure
defined in equation 4-2 and serve to further verify the singularities are driven by the

columns of the inertia matrices.
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4.2.3 Interaction Torque Performance

The interaction torque matrices are given by equations 4-8 through 4-10:
Anthropomorphic Robot:

B (1,1) = c,{-2¢,5,,[c,(E +J)+ Ba,]+ (E + J)(s,¢, + 8,¢,) + B(a,s, — Dc,,) + (G - K)s,c, — ADc, }
B.,(1,2) = 5,{B(2a,c, + Ds,;,)+ ADs, + (E + H + K)}

B,,(1,3)=s,{B(a,c,+ Ds,,)+ E+1,_}

B, (2,1) = 5,{-2¢c,s,,[c;(E +J) + Ba,]+ (E + J)(s,¢, + 5,¢;) + B(a,s, — Dc,;) + (G~ K)s,c, — ADc, }
B.,(2,2) =—c,{B(2a,c, + Ds,;,)+ ADs, + (E+ H + K)}

B ,(2,3)=—c,{B(a,c, + Ds,,)+(E+1,_)}

B,,(3,1) =2c,c,,[c,(E+J)+ Ba,]-(E+J)c3 +¢)+(K-G); +E+L

B,,(3,2)=B,(3,3)=0 4-8)

where:

D=dy+d,

E=m3r32

G=IZxx‘IZyy

H=I2ZZ+I3ZZ

J ='(13xx"I3yy)

K=myr, +m3a22

L=liyythxxt]ayy

do=length of link O (inert link)

Ijiu=moment of inertia of link j about the k axis

Spherical Robot:

B,,(L1)=(H,-E,-G,)cc,s,+ B (a,c;5, + a,s,¢,)~ A,a,s,

B, ,(1,2)=—-(E,+ F;)s, + B, (a,s,c, — a,c,s,

B ,(1,3) = my(a,s;s, + a,cc,)

B,,(2,1)=(H,-E ;- G,)s;s,¢c, + B, (a,s,s, —a,c,c,)+ 4,a,c,

B ,(2,2)=(E, + F,)c, - B,(a,cc, + a,s,s,

B, 4(2,3)=-m,(a,c;s, — a,sc,

B,,31)=E, +I1,,+G,+K +(H,-E,-G,)c]
B.,(3,2)=-B.a,c,

B,,(3,3) = -m,a,s, (4-9)
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where:

Ee=msry’
Fs=12yy+13yy
Gs=oxxtlaxx
Hs=13 ZZ+IZZZ
Ks=m3a22+m2r22

Wrist Robot:

B,(L1)=—s;{(K, +E, +L,)c,c; + A,d,c, + J,cs(5,5 — ¢,c5¢6)}
B, (1L,2)=-(M_ +E +L)s,—A,d,s,c;—J cs(5,65+€,C58)
B,(1,3)=1,
B, 2)=s,{—~(K,+E,+L)s,c; — A,d,s, +J,c5(C,55 —5,65¢5)}
B,,(2,2)=(M_ +E, +L)c,+Adcc,cs+J c(c,cs —5,655)

B (2,3)=1,,
B3 )=-s2(K,+E, +L,)-J s}
B,,(3,2) = J s.54¢

C,Ss

5,85

B,,(3,3) =1, ¢, (4-10)
where:
E 2
w— el
J w=I6yy'I62xx
K,=mjsrs +].’116d52

Lw= I5xx"ISzz+16yy'I6zz +2meteds
My=IsyyHexx+2mersds
w:I4yy+15xx+I6yy+2m6r6d5
The inertia torque performance of the three DOF anthropomorphic robot can be seen
in Figure 4-8 by evaluating the torque performance measure defined in equation 4-2.
However, the inertia torques created by accelerating joints 2 and 3 are always parallel so
this evaluation was made for joints 1 and 2 only (first two columns of the matrix). This

highlights one advantage of using this performance measure instead of the determinant of

the matrix, because performance of the robot in reduced degrees of freedom can still be
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evaluated. The inertia torque performance for the spherical robot is shown in Figure 4-9

and the wrist torque performance is shown in Figure 4-10.

Torque Performance - Anthropomorphic Robot
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Figure 4-8
Torque Performance — 2 DOF Anthropomorphic Robot
The torque singularities are much less intuitive than the force singularities. This is
further complicated by the complexity of the interaction torque equations, even when
simplified as much as possible (nor does the determinant simplify into a nice form).
However, they still occur in the same two general cases: either when one or more
columns becomes parallel (case 1) or one or more columns of zeros occur in the By

matrix (case 2). For the anthropomorphic robot, the torque singularities occur near the
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same regions as the case 2 force singularities. However, in this case the torques created
by accelerating the CG of the robot are cancelled by accelerating the inertia of a link,
which results in a column of zeros. The spherical torque singularities occur when the

torques created by all three links become parallel.

Torque Performance - Spherical Robot
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Figure 4-9
Torque Performance — 3 DOF Spherical Robot
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Torque Performance - Wrist Robot
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Figure 4-10

Torque Performance — 3 DOF Wrist Robot

The wrist torque performance is again only a function of 8s and of relatively small
magnitude, reiterating the assertion that it is unlikely to be useful alone in creating
effective interactions. It also has a large region of very small torque performance from
100°<05<180°. This occurs because the last link is oriented up towards the first link,
which reduces the effective inertia of links 1 and 3. However, the wrist can be useful
when added to the last link of an existing robot. First, the full inertia matrix, B(0),
becomes 6 x 6 and could then be directly inverted in the control scheme to provide full
six degree of freedom inertial damping capability. Another option is to use the additional
inertia of the wrist to increase the damping effectiveness of the base robot. The wrist

could then be used to provide final positioning or to give desired orientation of the end

effector.
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4.2.4 Combined Performance

The combined force and torque performance of the robots can be evaluated by using
equation 4-3. It is important to note that, even if the interaction forces or torques are
prescribed independently, commanding one will always command the other. Thus, it
becomes important to be able to evaluate the combined force and torque performance of
the robot. The combined performance plots for the anthropomorphic and spherical robots
are shown in Figures 4-11 and 4-12. In these cases, the interaction inertia matrix
becomes 6x3, but the proposed performance measure still allows evaluation of the

combined force and torque performance.

Combined Performance - Anthropomorphic Robot
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Figure 4-11
Combined Force and Torque Performance — 3 DOF Anthropomorphic Robot
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Combined Performance - Spherical Robot

50 Case 1 Torque Singularities
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Figure 4-12
Combined Force and Torque Performance — 3 DOF Spherical Robot
For the two robot configurations shown here, the addition of the torque effects makes
little difference in the overall performance. As can be seen in Figure 4-11, the
anthropomorphic robot inertial force singularities are still clearly apparent and the overall
shape of the performance measure remains the same. For the spherical robot, the inertia
forces are even more dominant and the torque singularities are practically eliminated
from the plot. The torque effects also slightly improve the performance around the case 1
force singularities. The ideal situation would be to fully prescribe both forces and

torques for six DOF base vibration damping. However, these plots indicate that if only
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the forces or torques are to be prescribed it is more important to consider the interaction

forces.

4.3 Nonlinear Rigid Interaction Force and Torque Effects

This section investigates the nonlinear interaction forces and torques expecting during
multi-degree of freedom inertial damping. Inertial damping has been shown previously in
limited degrees of freedom and with robots oriented in specific configurations. The
single link case is relatively straightforward since the acceleration of tile CG of the link
and centripetal acceleration will be perpendicular for rotational joint motion [47]. This
will not be the case with multiple joint actuation, so it becomes more important to address
these.

The interaction forces and torques directly controllable by the rigid micromanipulator

are given by:
6, 6,6, 6?
F,. =B,(0) 6, + N, (0) 6,0, + N (6) 6? +G,(0)
4, 6,6, 6?2
g, 6,6, 6?
Tip =By (0)| 6, [+ Npro(0)| 66, [+ N, (0)| 6] |+G.(0) (4-11)
4, 6,6, 6?

Here coriolis and centrifugal effects have been written separately. Gravity effects are not
further discussed here since they are not dynamic effects. In addition, in Chapter 5
rationale will be presented which allows the assumption to be made that the matrices

governing the interactions may be linearized about an operating point.

78




The nonlinear rigid effects are functions of the manipulator position and joint

velocities. The anthropomorphic rigid coriolis force matrix is given by:

2s,(As, + Bs,;) 2Bs,s,, —2Bcc,,
Ny =|—2¢,(4s, +2Bs,;)  —2Bcs,,  —2Bsicy (4-12)
0 0 —2Bs,,

The anthropomorphic rigid centrifugal force matrix is given by:

—¢,(dc,+Bc,,)  —c(Ac,+Bcy,) —Bcgc,,
N, o == (Ac, + Bce,,) —5,(Ac, +Bc,;)  —Bscy, (4-13)
0 —(4s, + Bs,;) —Bs,,

First, the variation in the nonlinear effects due to joint position is investigated. Next, the
effect of joint amplitudes on these effects will be discussed.

Assuming harmonic base vibration of mode i of the flexible base, the base motion and
prescribed interaction forces and/or torques will be harmonic and take the form
(justification for this will be shown in Chapter 5):

X, =X, st
Fy/Tp ==K, X0, cos oot 414

Ki can be used to adjust the amount of damping added to the system. From equation 4-
11, the interaction effects are controlled by joint postions, velocities, and accelerations.
If any one of these are commmanded harmonically, the others will also be commanded
harmonically.

First, consider the nonlinear forces generated by the anthropomorphic robot during

multi-degree of freedom harmonic joint motion (Figures 4-13 and 4-14). These plots
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were generated assuming all joints are actuating simultaneously and at constant
amplitudes given by:

o,
6 =15 (——)cos(1.4* 27t
(g7 cos-4%271)

0 =-2.3sin(1.4 * 27¢)
6 = —20cos(1.4* 27t) (4-15)

Harmonic motion at 1.4 Hz was chosen because it is the fundamental mode of vibration
of a long, flexible link. This is representative of a fundamental mode of a flexible
macromanipulator, i.e. lightly damped, low frequency harmonic vibration. The inertia
forces generated under these same circumstances can be seen in Figure 4-15. Note these

are not the same comparisons as the figures in Section 4.2.
Nonlinear Coriolis Forces - Anthropomorphic Robot
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Figure 4-13
Anthropomorphic Robot Coriolis Forces
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Nonlinear Centrifugal Forces - Anthropomorphm Robot
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Figure 4-14
Anthropomorphic Robot Centrifugal Forces

Inertia Forces - Anthropomorphic Robot
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Figure 4-15
Anthropomorphic Robot Inertia Forces
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Although this initial analysis may be overconservative since it does not consider the
effect of decaying amplitudes or phasing, it does bring to light several important
considerations. First, the magnitude of the inertia forces is much larger than the
nonlinear forces. Second, coriolis forces are largest in near-singularity regions (case 2 in
Figure 4-5). Thus, the coriolis forces are not a great concern because operation in these
regions will be avoided by using the performance index. However, the centrifugal forces
are largest around the kinematic singularities (case 1 in Figure 4-5) and where the inertia
forces are largest, as shown in Figure 4-15. In fact, the centrifugal forces are maximum
at the singularity point 6,=0°, 0;=0°. Operation exactly at the singularity points will be
avoided, but operation around them may be required, especially if large inertia forces are
desired.

Since the anthropomorphic robot is always singular in three DOF inertia torque
performance, the spherical robot was chosen to study the nonlinear torque effects. The
spherical robot coriolis and centrifugal torque matrices are given by equations A-37 and
A-38 in Appendix A. Note the third link is prismatic, so r3 is a variable. Figures 4-16
and 4-17 show the variation in nonlinear torque performance throughout the joint
workspace and Figure 4-18 shows the inertia torques. These plots indicate that the
coriolis torques are greatest in joint configurations where the inerti# torque effects are
largest. The centrifugal torques are largest in regions where the inertia torques are small,
indicating they will interfere less with the inertia torques. Again, the magnitude of the
inertia torques is greater than the nonlinear torques, but not to the same extent seen for

the anthropomorphic robot forces. Although these results are not presented here, the
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anthropomorphic robot also has a much larger ratio of inertia/nonlinear torques than the
spherical and wrist robots. This occurs primarily because the last link of the spherical
robot is prismatic and accelerating it does not provide the additional rotational inertia
effects. In general, for both robots the centrifugal torques become large near the inertial
singularity torque regions, while the coriolis torques become more of a concern in regions

where the inertia torques are large.

Nonlinear Coriolis Torques - Spherical Robot
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Figure 4-16
Spherical Robot Coriolis Torques

83




Nonlinear Centrifugal Torques - Spherical Robot
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Figure 4-17
Spherical Robot Centrifugal Torques
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Figure 4-18
Spherical Robot Inertia Torques
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From these initial studies, Matlab simulations were built for the anthropomorphic
robot to further investigate the relative magnitudes of the force and torque effects. These
were simulated by commanding the joint accelerations proportional to the velocities
calculated from assumed harmonic motion of the base in three degrees of freedom. For
example, the anthropomorphic robot was tested in a configuration expected to provide a
large inertia/nonlinear force ratio, as predicted by Figures 4-5, 4-13, and 4-14 (0°, 20°,
70°). The ratio of the inertia to nonlinear effects is large, as can be seen in Figure 4-19

(in these plots, the inertia and total force traces nearly overlay and are indistinguishable).

Comparison of Force Effects (0°,20°,70°) — 'c‘:‘e'.""’f.
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Figure 4-19
Anthropomorophic Interaction Forces, Large Inertia Effects

The same comparison is shown in Figure 4-20 with the robot in the configuration [0°,

85°, 10°], which is a region where the coriolis forces are expected to be large as well as
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near a case 2 inertial singularity. The reduced ability of the robot to produce inertia

forces is seen in the y direction as well as the increased coriolis effects (coriolis and total

traces are nearly overlaid in the second subplot). Also, note the increased centrifugal

forces in the z direction (centrifugal and total traces are overlaid in the third subplot).

Since both joints are nearly straight out, the centrifugal forces due to joints 2 and 3 act

primarily in the z direction. This scenario is near an inertial singularity region, which

will be avoided if possible. The nonlinear effects give even more reason to avoid these

joint space configurations.
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Figure 4-20

Anthropomorphic Interaction Forces, Near Singularity Case 2
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Figure 4-14 predicted large centrifugal forces in a region with expected large inertia
forces. The same comparison is shown in Figure 4-21 in the configuration [0°,20°,-10°],
shown in Figure 4-22. In this case, the inertia forces act primarily in the y direction,
while the nonlinear centrifugal forces all align primarily along the x-axis. The ratio of
the inertia to nonlinear forces becomes smaller in the x direction, which results in more
nonlinear effects in the total force trace. This is clearly seen in the top figure where the

centrifugal (dashed line) effects are picked up in the total force trace.
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Figure 4-21

Anthropomorphic Interaction Forces, Large Centrifugal Effects
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Figure 4-22
Anthropomorphic Configuration with Large Nonlinear Forces

4.3.1 Amplitude Effects

During active damping (this will be discussed more in Chapter 5), the joints will be
actuating harmonically to damp the base vibration. The effect of the amplitude of the
harmonic joint motion has not yet been considered. As an example, consider prescribing

harmonic joint accelerations:

6 = Acoswt (4-16)
The joint velocities will be:
6 =Lsinor (4-17)
@
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The ratio of the joint accelerations, which directly affect the inertia effects, to the square
of the joint velocities, which directly affect the centrifugal effects and occur at the first
harmonic of the fundamental frequency, is given by:

6  Acoswt

F=p (4-18)
(=)sin® wt
()
The ratio of their amplitudes becomes:
6|
%:7 (4-19)

Alternately, if two joints are actuating, the link accelerations and velocities are given by:

6, = A cosmt b, =4, cosmt

6, =isin(olt 6, =—A——Z—sina>2t (4-20)
a)l 0)2

The ratio of the joint accelerations, which drive the inertia effects, to the product of joint

velocities, which drive the coriolis effects, becomes:

4
‘ 1 _ 90,

ol 4

(4-21)

The frequencies of actuation will be driven by the natural frequencies of the
macromanipulator, which are not controllable. However, the ratio is also inversely
proportional to the amplitude of motion, which is controllable. This issue is addressed
more rigorously in Chapter 5, where the joint amplitudes are related to the feedback gains
and appropriate gain limits established. By limiting the amplitude of motion of each

joint, both of the nonlinear effects will be reduced.
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For example, consider the anthropomorphic robot in a configuration of [0°, 75°, 10°].
The second link is moved slightly from the configuration used in Figure 4-20 so the robot
is not as near the inertial singularity region. The inertia, coriolis, centrifugal, and total
forces are shown in Figure 4-23. The top two plots show the interactions due to all three
joints actuating with constant amplitudes of approximately 23°. The bottom two plots
show the forces when the joint amplitudes are reduced in half. While this results in lower

inertia forces, it also has the effect of improving the ratio of the inertia/nonlinear effects.
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Figure 4-23
Effect of Reducing Joint Amplitudes on Nonlinear Effects
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4.4 CG Method to Identify Critical Interaction Force Effects

This chapter concentrated on the interaction effects directly controllable by the rigid
robot, which are the inertia and nonlinear rigid effects. The method originally used to
develop the force equations is the Newton-Euler method described in Section 3.3.
However, a much more efficient method may be used to develop the interaction forces
directly controllable by the rigid robot. This made developing the six DOF
anthropomorphic/wrist force equations manageable and was the method used to derive
equations A-48 through A-50 in Appendix A.

The micromanipulator does not have a fixed point, so the interaction forces acting
between each link are found by summing the moments about the CG of each link.
Alternatively, the moments may be summed about the CG of the overall robot. The

position vectors to the CG of each robot are given in Appendix A. Let:
foo =Jcob (4-22)
The interaction forces are given by:

d .
Fr= '(;;M . cco) (4-23)

where M is the total mass of the rigid robot. The inertia and nonlinear rigid effects,
defined in Equation 4-1, are given by:

B ;= MJ
N = MJ CGéi (4-24)
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where Nr represents combined coriolis and centrifugal forces. If desired, the
macromanipulator inertia effects may be added by including the base direction cosine

matrix, which is defined and discussed in Book [8], Lew [34], and Senda [62].

1 -6, 0,
Yoo =Xeor ¥ 6, 1 6, |1,
-0, 6, 1
B +4,=J¢ (4-25)

where rcg; is the position vector (from the base) to the CG of the rigid robot and 6y, 6y,

and 0, are the small base rotations about the x, y, and z axis.

4.5 Conclusions

The interaction forces and torques will be used in the control scheme to add damping
to the flexible base. At this point, some general conclusions should be made about the
interaction effects, which will be used to develop the vibration controller and gain limits
discussed in Chapter 5.

1) The nonlinear and inertia effects are driven by two factors: the configuration of the
robot and joint accelerations and velocities. The inertia performance measure introduced
in equations 4-2 and 4-3 and plotted in Figures 4-5 through 4-12 can be used to choose
inverse kinematic solution(s) best suited for inertial damping. As an example, consider
the anthropomorphic robot in the two configurations shown in Figure 4-24. The left
configuration shows a very poor configuration for inertial damping (case 2 inertial
singularity), while the alternate inverse kinematics solution shown on the right will

provide much better inertia force performance.
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Figure 4-24
Alternate Inverse Kinematic Configurations for Anthropomorphic Robot
On the other hand, consider the configuration shown in Figure 4-22, which resulted in
large centrifugal forces. The alternate inverse kinematics solution would not provide an
improvement in performance in this case since the problem results from a combination of
effects created by all of the joints, which would occur in either configuration.

2) In general, the coriolis forces are largest near inertial force singularity regions,
while the centrifugal forces can become large in regions where inertia forces are large.
The centrifugal torques are largest near inertial torque singularity regions, while the
coriolis torques are more of the concern. There are configurations, however, where one
or both can interfere with the ability of the robot to create effective inertia forces or
torques.

3) The inertia effects are functions of the joint accelerations, while the nonlinear
effects are functions of the joint velocities. The amplitude of joint motion directly

influences the ratio of the inertia to nonlinear effects, as shown in equations 4-19, 4-21
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and Figure 4-23. The relationship between the joint amplitudes and feedback gains will
be developed in the next chapter, and gain limits established to ensure this ratio remains
favorable for inertial damping.

When the performance index is used in conjunction with the limits on control gains,

the most important dynamics of the coupled system (equation 3-31) take the form:

M,+4,06) B, 0) B®0) (X | [coo]|%| [KooT]x,] Jo
A4,0)  J+B,,0) B,©®) |6, |+0C 0|, [+[0K, 0|8, |=|0| (4-26)
BL(0) BI(8) B.(0) ||§ 000 |lg 000 |o, T

This also assumes the elastic deflections and rates are relatively small compared to the

acceleration effects.
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CHAPTER YV

CONTROL SCHEME

5.1 Introduction

This chapter discusses the control scheme that will be used to provide position and
base vibration control of a flexible base manipulator. The goal of the control scheme is
to add to an existing position controller vibration damping capability. The rigid robot
will be commanded to provide the interaction forces and torques to damp the vibration.
An overview of the control scheme is shown in Figure 5-1. It is assumed the PID
position controller is designed separately for rigid robot control. The rigid robot model is
given by the third row of equation 3-27. The coupled rigid/flex dynamics are given by
the first two rows of equation 3-27, and the flexible manipulator is modeled by equation

3-19. The reason this form was chosen for the controller is discussed in Section 5.4.3.

Inverse
X4 Kinema'tics/ 04 PID T 0, F/up Xt
| Damping Positi a Rigid Coupled Flexible L
Performance osition Robot Rigid/Flex Manipulator
Index Check Control Dynamics

Flexible Base Vibration
Controller

Figure 5-1
Combined Position and Base Vibration Control Scheme
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First, the inverse kinematics/damping performance index check really consists of two
parts. The complete performance index will predict the overall ability of the control
scheme to be effective. This includes a comparison of the micromanipulator and
macromanipulator inertia properties as well as weighting matrices to include other
effects. The rigid robot performance measure that was introduced in equations 4-2 and 4-
3 will be used in the weighting matrix for the rigid robot and can be used to choose the
best inverse kinematics solutions for inertial damping.

Next, the vibration controller is introduced. One important goal of this section is to
establish a range of vibration control feedback gains to ensure vibration energy is
removed from the system. This involves establishing an upper limit that will limit the
joint amplitudes such that the interaction effects due to the joint accelerations are greater
than those due to the joint velocities, hence limiting the significance of the nonlinear
effects. In addition, a lower limit is established to ensure higher system modes will be
damped. Based on the results from Chapter 4, when the performance index is used along
with these control gains, the most important dynamics take the form of equation 4-26. In
order to add damping to the system, the joint accelerations will be commanded out of
phase with the flexible base velocity.

The control scheme takes advantage of the fact that the base vibrations are of
relatively high frequency compared to the rigid robot motion required to perform a task.
The separation of bandwidths, or time constants, between the position and vibration

control loops allows them to be considered separately. This is not addressed further here,
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but more detail can be found in references [11], [33], and [35]. However, it is important
to check the validity of this assumption for the specific application.

It may be desirable in some cases to provide feedback proportional to the velocity and
position, akin to an ideal vibration absorber. This can give more flexibility in improving
system damping but requires additional measurements or manipulation of the measured
vibration data. However, the general form of the controller as well as guidelines for
choosing feedback gains will remain the same for either form.

Finally, the control performance of the linearized system will be discussed in the
single degree of freedom case. Root locus plots based on the linearized models verify
that, over a range of feedback gains, damping can be added to the flexible system. For
these studies, it has been assumed the rigid robot model takes the form of the third row in
equation 3-27. The hardware on which this control scheme was implemented was a
hydraulically operated robot. The actuator dynamics dominated the performance of the

experimental robot, so this effect is also discussed in Section 5.4.5.
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5.2 Performance Index

The performance index may be used for two tasks. First, it may be used to predict the
expected effectiveness of the inertial damping control scheme. This needs to include a
check for inertial singularity points and include other effects, such as the
macromanipulator inertia and limits on allowable joint motion.

The following performance index will provide this measure:
PI=[i"M @) W M (§)%,]" [b’;B((i)TW,B(é)b’m] (5-1)

where:
X,, = [maximum flexible base accelerations]

] ,» =[maximum rigid robot joint accelerations] (5-2)

By including the maximum base accelerations and joint accelerations, a direct measure of

the micromanipulator to macromanipulator interaction forces and torques can be made.

In addition, different limits on joint accelerations can be accounted for via the maximum

acceleration vectors. This could be important if the actuators of the rigid robot have

bandwidth limitations or can saturate, which may impact the effectiveness of this

technique. On the other hand, if the rigid robot can accelerate its links rapidy it will be
more effective.

The micromanipulator and macromanipulator inertia properties are given by:

2
B, (0)
Y :[Mf +4,0) B,®) }

o - (5-3)
4,0) J+B,(0)

where these are the inertia effects from equation 4-26 linearized about an operating point.

It is assumed the macromanipulator is in a fixed joint configuration so the
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macromanipulator properties are assumed approximately constant, but in reality they will
vary with the configuration of the macromanipulator. Regardless, this performance
measure will predict the expected performance based on the inertia properties of the
macromanipulator in any configuration. The inertia matrices times the acceleration
vectors provide the forces and torques due to the flexible and rigid manipulators in each
direction. In the most general case, this results in two 6x1 vectors. The transpose of
these vectors times the vectors of the forces and torques results in a constant equal to the
sum of the square of the forces and torques. = However, this measure alone does not
indicate whether the rigid robot has the ability to generate these interactions in multi-
degrees of freedom. Thus the weighting matrices need to be included.
The rigid robot weighting matrix is given by:

_ |B@) B@)|
’ |B(6)TB(6)|m

(5-4)

This was partially discussed in Chapter 4 along with its usefulness in determining joint
space configurations better suited for inertial damping. The only difference here is that it
is normalized, essentially assigning a penalty as the rigid robot moves away from its best
configuration. Another advantage of normalizing the performance measure is that the
units of the resulting B'B matrix do not matter.

Some authors have questioned the validity of eigenvalues and singular values for
systems with physical inconsistencies, such as robots with mixed prismatic and revolute
joints [20,60]. For example, the third link of the spherical robot is prismatic, so the B¢

matrix in equation 4-6 has units of mass for the third column while the other columns
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have units of mass times distance. This is not a problem if the determinant if By is taken,
but using the determinant introduces many other disadvantages that were discussed in
section 4.2.1. However, the weighting matrix is only intended to assign a penalty as the
rigid robot moves nearer singularity regions. The units of the resulting system are not
important since they are normalized, so the resulting weighting matrix is unitless. N is a
6x6 diagonal weighting matrix which is similar to the weighting functions used in
optimal control [23]. Its purpose here is to scale the torques by a constant distance so the
total forces and torques will have consistent units and may be added, although other
considerations could be included if desired. The resulting performance measure for the

rigid robot is given by:

2

7.
PI =W, *( Z F2 . 2 (5-5)
i=x,y,z N

where Fi max and i max are the maximum interaction forces and torques that can be created

by the rigid robot and OCW;C1. The nearer the robot is to a singularity configuration,

the smaller W, will be.

The flexible base weighting matrix provides a scaling factor based on the inverse of
the flexible base stiffnesses. It is also normalized based on the minimum stiffness in the
system. This has the effect of reducing the weighting in stiffer directions or with higher
frequency vibration. Assuming harmonic base vibration, the higher frequencies result in
lower amplitude vibration and will damp more quickly than the lower frequencies. N is

again a scaling factor to normalize the torques. The flexible weighting matrix is given

by:
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L o000 0
KX
1
0 — 0 0 0 0
K
y
1
00— 0 0 0
KZ
W, =Ky 1 (5-6)
0 0 0 0 0
1
0 0 0 0 0
N*G,
1
00 0 0 0
I N*G, |

The resulting perfomance measure for the flexible base is given by:

K . G.
P‘{ = Ezmax o + Ti2max sy (5-7)
7 Z ¢ az ™ NG,

where F max and T; max are the maximum interaction forces and torques created at the base
of the rigid robot due to the macromanipulator tip acceleration. The weighting matrix has
the effect of reducing the magnitude of the interaction forces and torques due to the
macromanipulator in stiff directions.

The overall performance measure compares the ratio of the performance measures
(PL/PIy). Notice it will be larger if the macromanipulator has stiff directions that are of
less concern for vibration. Also note it is immaterial whether the units are English or SI
because the weighting matrices are normalized. The only requirement on units is that
units used for the macromanipulator be consistent with those used for the

micromanipulator. Finally, although it is not specifically addressed in this dissertation,

101




the measure may be extended to address cases of underactuation or redundancy, since
there is no requirement for the B or M matrices to be square.

The measure discussed above will predict, in general, the ability of the inertial
damping scheme to successfully damp vibration in the macromanipulator. It may be used
in the control scheme, and for thoroughness, the full performance measure should be used
if computational capability allows it. However, it may also create an unnecessary burden
on the controller to carry out the calculations real-time. The reduced rigid robot
performance measure introduced in equations 4-2 and 4-3 may provide a quicker and
more easily implementable measure to use actively in the control scheme or in the
development of pre-programmed trajectories. This reduced measure was used in Matlab
simulations and experimental work discussed in Chapters 6 and 7 in order to reduce

computation time and demonstrated its effectiveness.

5.3 Vibration Controller

In most workspace locations, the inertia effects dominate the controllable interaction
forces and torques. The performance index discussed above may be used to choose
workspace configurations where the inertia effects are large. In configurations where the
nonlinear effects become large, the amplitude of joint motion can be limited to improve
the ratio of inertia to nonlinear effects. When this is the case, the vibration controller will
prescribe the joint accelerations out of phase with the base velocity as follows:

0 =-ID(0,0)Kx (5-8)

ID is an inverse dynamics function designed to cancel the significant rigid robot

dynamics [4,19] and x refers to the flexible base vibration (xs). K is a diagonal matrix of
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gains Kj, where K is the gain for the i vibrational degree of freedom. With the limits on
gains that will be developed in the next section, the inertia effects are expected to be most
significant. Thus the prescribed joint accelerations will be:

0 =—B'(0)Kx (5-9)

However, the joint torques will need to be commanded so the final vibration controller

takes the form:

T=-B_(0)B'(0)(Kx) (5-10)
B.(0) is as defined in equation 3-27 and
B.(0
B{ s )} (5-11)
B_,(0)

It is assumed the rigid robot joint positions, 0, are measured and available for use in
the control scheme. There should be a minimum value established for the determinant of
the inertia matrix to prevent it from being inverted when the robot is passing through a
singularity configuration. Although these regions will be avoided for point-to-point
motion and fixed configuration operation, it may be necessary to pass through the
singularity regions. In this case, it will become necessary to limit the commanded output

from the controller.

5.3.1 Vibration Control Gains

The goal of this section is to establish a range of vibration control feedback gains to
ensure vibration energy is removed from the system. The upper limit is developed in
order to limit the joint amplitudes such that the interaction effects due to joint

accelerations (inertia effects) are greater than those due to the joint velocities, hence
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limiting the significance of the nonlinear effects. In addition, a lower limit is established

to ensure higher system modes will be damped.

5.3.1.1 Upper Limit

In order to establish an upper limit on the feedback gains, first assume harmonic base
vibration of mode i. As discussed in Chapter 4, assuming harmonic motion of the rigid
robot, the inertia effects will be functions of the joint accelerations and, with the proper
limit on the amplitude of joint motion, will be greater than the nonlinear effects. Thus,
the vibration controller will prescribe the joint accelerations out of phase with the base
velocity in order to add damping to the flexible base.

The prescribed joint accelerations, velocities, and positions for the jth joint will be

approximately harmonic and take the form:

x; =X, sinwt

b,=-B"(0)K X » cosat

0,=-B"(0)K X, sinwt

_BOK.X,
)

i

6 cosa;t (5-12)

j
Here is it assumed the inertia matrix, B(@), can be linearized and is approximately
constant about an operating point. The feedback gains will be selected to ensure this is a
reasonable assumption and will be discussed in more detail later.

The maximum amplitude of the prescribed joint motion will occur during the first few
cycles of vibration damping and for each joint can be written as:

KB'(@0)X,
(O3

1

|9j| =

4 (5-13)
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where A is defined as the amplitude of motion. It is clear that an upper limit on the
feedback gains is necessary, if for no other reason than to ensure the joint motion remains
inside the allowable workspace or to prevent actuator saturation. Another consideration
is the ratio of the inertia effects (functions of the joint accelerations) to the nonlinear
effects (functions of products of the joint velocities). This was discussed extensively in
section 4.3.1, and Figure 4-23 showed that the ratio of inertia effects to nonlinear effects
can be improved by reducing the amplitude of joint motion. Here, the centrifugal effects

are considered, so these become functions of the square of the joint velocities:

8| - @)k x0_0B86)
|T9':j?_|" “BRO)K’X: KX, (>-19)

Solving equation 5-13 for K; and substituting into equation 5-14 yields:

|9

| 407

1

j 1
|9:2| Ao} "4

(5-15)

Likewise, the ratio of inertia to coriolis effects takes the form:

. l =—t (5-16)

where ; and w; are two different frequencies of base vibration.

Notice by relating the feedback gains to the amplitude of joint motion, the ratios
become inversely proportional to the amplitude of motion, A. Thus, A can be limited to
ensure the joint acceleration effects remain larger than joint velocity effects. One upper
limit is A<l radian, although there may be more restrictive limits due to other

considerations. The gains should be limited such that:
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a)imin B(a)

K < min. 4 (5-17)

' X imax

The true multi degree-of freedom case is more complex, of course. In addition, the
selection of A and By,n will be specific to the macro/micromanipulator. The inertia and
force effects also vary throughout the workspace, as discussed in Chapter 4. However,
the above limit will help reduce the significance of the nonlinear effects, even when in
workspace locations where they can become large. Also, note this ratio improves with
decreasing amplitude, which increases the effectiveness of the scheme as the vibration is
damped.

This limit also helps validate the assumption that the inertia matrix B can be
linearized about an operating point. Consider the sensitivity of the inertia matrix to
changes in the joint positions. In order to keep this argument general, these matrices
consist of terms involving sines, cosines, and combinations of sines and cosines. This
general argument is intended to provide an example representative of all of the rigid robot

effects (inertia, nonlinear, and gravity matrices). In order to determine the error

introduced by evaluating B at an operating point, expand B in a Taylor series [6]:

o BB(0) ]
B(0)—B(0)+A6i(———69 ]H (5-18)

where A; is harmonic and given by the last equation in 5-12. The inertia matrix B as
well as its first partial derivatives are bounded and continuous. The limits on joint
amplitudes will ensure the variation term remains small. Also, note this assumption
becomes more valid as energy is removed from the system because the joint amplitudes

are reduced. This, in general, is applicable to all of the rigid robot effects.
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5.3.1.2 Lower Limit

A lower limit also needs to be established to ensure higher flexible system modes, if
excited, will be damped. The nonlinear effects will still be commanded along with the
damping effects. Here a worst-case scenario is considered where the nonlinear effects
excite a mode of the flexible system. The goal here is ensure net energy removal from
the system.

Assume an initial impulse force & (N) applied over a finite amount of time T excites a
fundamental mode of the flexible system. The rate of change of energy added to the
flexible base is:

aw_
dt

=X, cosw,t (N—m) (5-19)
s

ox

where the base motion is given by the first equation in 5-12. The energy added to the
flexible base is given by:

AW = LT dw, X, cosm,tdt

= 0X, sinwitlg
= §X;sino,T (N-m) (5-20)

The rate of change of energy dissipated by the damping controller is [59]:
W g5 (5-21)
dt

Over one cycle of vibration, the net energy dissipated by the vibration controller is:
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2z
AW =-K,0] X} [* cos’ w,tdi

2

@;

. p
_ Kiwiinz L+ sin 2w,
2 4o,

-Ko X' (5-22)
This holds regardless of whether velocity feedback alone is used or if velocity and
position feedback are used. This is the energy removed over each cycle of vibration, so
as long as the disturbance is applied over a finite period, the vibration controller will
remove energy from the system.

Based on linearizing the system and assuming harmonic motion over each cycle of
vibration, the nonlinear centrifugal forces take the form (the same form applies to the
nonlinear torques):

Fy, =N ()0’
Fy =N ()B>@)K}X]sin*wt

N, @B @)K} X}
Fy = )

(1-cos2w;t) (5-23)

where Ny represents Ner or Ncyo given in equation 4-11 for forces and torques,
respectively and (sinojt)® was replaced by an equivalent trigonometric identity. Define Y
as the amplitude of the nonlinear forces, or:

N, (6)B”(b)K} X}

Y(9)= >

(5-24)

Y may be assumed approximately constant since Ny and B may be assumed

approximately constant about an operating point, as discussed in section 5.3.1.1. The
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nonlinear force may be split into two terms, Y and —Ycos2wit. The rate of change of

energy added to the system due to the first term is given by:

% =Y(0)X 0, coswt (5-25)

Regardless of the mode or number of modes excited, if Y is approximately constant the
net work over each cycle of vibration will be small since:
27
AW, =Y(@) [* X0, coswdt ~ 0 (5-26)
and the vibration controller will remove any energy added.
The effect of the second term is more interesting. Define the first harmonic of the
fundamental frequency as:
@, =20, (5-27)
Consider the flexible base as a damped system responding to a harmonic forcing, or
Mg, +Cx, + Kx, ==Y (8) cos vt (5-28)
where M, C, and K are inertia, damping, and stiffness properties of the
macromanipulator and the natural frequency and damping ratio of the flexible base mode
are given by o, and &, respectively. Assume the resulting vibration will take the form:

x, = X, cos(@;t — ) (5-29)

where X; is the amplitude of the vibration and ¢ the resulting phase shift.
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Substituting 5-29 into 5-28 and solving for the resulting amplitude and phase shift yields:

-y
X, =—
L
_ 1 2 =252 = 2
L= @ -8 +(450,) (5-30)
Ca,
tang=———
ang K-Ma!
200, @,
=—f i (5-31)
o, — 0,

The rate of change of energy into the system and net energy added over one cycle of
vibration becomes:

aw

'—‘;t—= YX2QT' COSQTit*Sin((lTit—¢)

2z 2r
AW, =YX,o,cos¢ J'O“TI cos@,tsin@tdt - YX,@,sin ¢ _[0”71 cos’ @,tdt

= -YX,rsing (5-32)
Substituting 5-30 into 5-32 gives the net energy added to the system over one cycle of

vibration:

2 .
AW, = L singr SZWZ (5-33)

The net energy dissipated by the vibration controller over one cycle of vibration is:
-K.Y’ox

L2
In order to ensure energy dissipation, the goal is to choose K; such that AW, +AW;,<0.

AW, =-K X o7 = (5-34)
This relationship becomes:

~K,o,+ Lsing <0 (5-35)
The worst-case scenario occurs when the nonlinear harmonics occur exactly at a natural

frequency of the system, or when @, =w, and sing =1 in which case:




L= 250,y

-+ 2600, (5-36)
M
Thus the lower limit on the control gain to ensure net energy dissipation becomes:
K, >+28% (5-37)
M

Consider the meaning of this lower limit. As long as the vibration control gains are
selected such that the vibration controller adds no more energy to higher system modes
than that which can be dissipated by the natural damping in the system, overall vibration
energy will be removed from the system. However, this lower limit analysis only
considers the higher system modes. In order to prevent excitation of them along with
other negative consequences of using negative feedback gains, the lower limit is
realistically chosen as zero. Using the upper limit established previously, limiting the
gains to the range:

min B(0)
wr,mm ( )mm A (5'38)

i,max

0<K,<

will ensure effects due to joint accelerations are larger than those due to joint velocities,
hence the inertia effects will also be larger. It also ensures there is enough damping
available to successfully remove vibration energy from higher modes of vibration (if a

concern) if they are excited.

5.4 Controller Performance

This section investigates the control performance of the linearized system, for both

ideal robot models as well as a hydraulically operated robot. Using the linearized model
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shown in Figure 5-2, the controllability of the system is discussed. Next, the combined
system controller is discussed. The theoretical development in previous sections is based
on assuming increasing vibration control feedback gains results in a direct increase in
flexible base damping. This section shows that this is achievable over a range of
feedback gains and under what circumstances the position and vibration controllers
interfere. This is only briefly discussed for the linearized system here. For more
extensive analysis on methods to decouple the two controllers, the reader is referred to
Book and Lee [11], Lee[32,33] and, more recently Lew [35-38].

In most workspace regions, the inertia effects dominate the interactions, as discussed
in Chapter 4. The performance index will be used to ensure the robot operates in these
joint workspace configurations, whenever possible. In other regions where nonlinear
effects can become large, the joint amplitudes will be limited as discussed in section 5.3.1

to reduce the nonlinear effects.

Disturbance
6,
Performance 0,v- T 1 l Fir X
X4 Index K,;s+K, B.(6)s* B @ 1
» L (Allows — Coupled Rigid/ | Ms2 +Cs + K
inearization) Position Rigid Flex Dynamics
Controller Robot Flexible manipulator
B (6 K
A )K,,(s-{»—”v)
B I (0) Kdv
Flexible base vibration controller
Figure 5-2

Linearized Single Degree of Freedom Control Scheme
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When these conditions are met, the linearized equations of motion from equation 3-27

take the form:
F.=B,(0)f
T, =B, (0)0
r=B_ ()8 (5-39)

The rigid robot control model does not include actuator dynamics, which would be a
factor in most real robotics systems and is discussed in the next section. In order to

shorten the notation in this section, Fir will refer to both interaction forces and torques.

5.4.1 Controllability

Controllability can be investigated for the linearized, single degree of freedom model.

The state space model takes the form:

X| [-C/M -K/M 0 0]/ x| [B/B.M)

x 1 0 0 Oflx 0

. | = e T (5-40)
0 0 0 0 0|6 1/B,

0 0 0 1 0@ 0

The controllability matrix [55] has a rank of four except when B=0 (B, is finite). The
determinant of the controllability matrix is given by:

32 2
det = ﬁlj“‘? (5-41)

Assuming the form of the controller given in equation 5-10, the system has full state
controllability by the rigid robot joint torques, T, except when B=0. Thus this is a

sufficient but not necessary condition for controllability of the system since the states

could still be controllable by some alternate controller form.
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For the multi-degree of freedom case, this corresponds to an inertial singularity point
discussed in Chapter 4. In these configurations, the rank of the controllability matrix
reduces to two and, assuming the use of the controller in equation 5-10, the rigid robot
inertia matrix is not invertible. Another problem situation occurs when the ratio of
macromanipulator stiffness to inertia (K/M) becomes very small, which indicates an
extremely flexible base or large macromanipulator. This would also present a problem
since there will be no coupling between the rigid robot interactions and the mode of
vibration. Note the performance index described in section 5.2 would also predict

impacted performance in all of these scenarios.

5.4.2 Ideal Rigid Robot Model Control Performance

The general case of position and velocity feedback is investigated here (gain limits
developed in Section 5.3.1 are applicable for either case). Simulations were built using
velocity and position feedback as well as the more specific case of velocity feedback
only. Experimental work used acceleration feedback with actuators that act as a Velocity
source.

The compensated closed loop transfer function is affected by both the joint controller

and vibration controller and has a characteristic equation given by:

K
K (s+—2)
. . PD,, Y K
characteristic equation =1+—-~+ — dv (5-42)
B_s Ms*+Cs+K

T

PDyos represents a proportional-derivative position controller for the rigid robot. The last

term is the vibration controller. The interaction forces and torques, are prescribed as:
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K
Fplty=-K, (x+ va x) (5-43)

dv
and are generated by accelerating the links of the rigid robot. The transfer function with
the vibration controller feedback gain K, as the multiplying factor takes the form [55]:

2 va
B s°K (s+—7)
K

G(s).. . = & S—44
(S)wbratmncontrol (MSZ +CS+K)*(BTS2 +de+Kp) ( )

Consider the typical case of a flexible base with a low fundamental mode (<2 Hz) and
low damping. Under these circumstances the dominant flexible system poles are very
close to the imaginary axis and at a value roughly equal to the first natural frequency of
the system. Figure 5-3 shows a pole-zero map of equation 5-44, with lightly damped
flexible poles near the jo axis, critically damped rigid position control poles, and the
placeable vibration control zero. To add damping directly to the system, the departure
angle from the complex pole (the top one is considered here) would be approximately
225°, as shown in Figure 5-3:

180° —90° +180° —2*§ + 0 = 225° (5-45)
where ¢ represents the angle of the vector from the rigid control poles to the flexible pole

and 6 the angle of the vector from the vibration control zero to the flexible pole.
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Pole-Zero map
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Figure 5-3

Pole-Zero Map of Closed Loop System

For critically damped performance and in order to limit the zero to the left half plane
(6>0°), the lower limit for the rigid control poles is ¢ >22.5°. Note as ¢ increases the

speed of the rigid controller decreases since the poles are moving closer to the imaginary
axis. Thus, the tradeoff is a limit on position control bandwidth if optimal damping is
desired, which corresponds to a limit of roughly 2.5 times the fundamental frequency. At
the lower limit (¢=22.5°), the zero would need to be placed at an infinite distance along
the negative real axis to achieve the best vibration control damping, which of course is
unrealistic. However, it can be concluded that position plus velocity feedback of base

vibration gives the best solution for combined position and base vibration control, in the

case of an ideal rigid robot model.




For example, placing the poles at roughly twice the natural frequency of the flexible

mode gives the best location for the zero at:

0 =-45 +2*tan"'(1/2) (5-46)

or at roughly 7 times the natural frequency of the flexible system. This results in the root
locus plot shown in Figure 5-4 (again plotted for increasing vibration feedback gains).
The resulting improvement in flexible pole damping is as desired, but the tradeoff is
underdamped rigid robot position control performance. If the feedback gains are large
enough to achieve critically damped rigid poles, the flexible system damping
improvement is diminished. This suggests a lower allowance for the independently
designed position control loop because the natural frequency of those poles increases
when combined with an inertial damping controller.

The effect of the position control gains should also be considered. In this case, the

open loop transfer function is given by:

6(s) (K5 +K,)(Ms* +Cs +K)

(5-47)

position control

K
B.s*(Ms> +Cs+K +K (s + va ))

dv
The root locus plot for increasing position control feedback gains is shown in Figure 5-5.
The best flexible damping performance is achieved very quickly and at low gains for the

position controller.
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System poles for increasing base feedback
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Figure 5-4
Root Locus for Increasing Vibration Control Feedback Gains
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Figure 5-5

Root Locus for Increasing Position Control Feedback Gains
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This can also be seen by considering the closed loop transfer function between the

interaction forces and desired joint position:

B S
. PD,, -t
() , (5-48)
8,(s) K,
14 —22 4 dv

Bs* Ms*+Cs+K

Low position control gains also help reduce the interaction forces due to commanded
movement, and hence unwanted vibration, induced by the rigid manipulator. Note using
the scheme shown in Figure 5-1, the vibration control performance will not be affected.
During active damping when the base vibration is significant, torque inputs required by
the position controller are much smaller than those due to the vibration controller. When
the base vibration subsides, the position controller will ensure the robot is in its correct
position and with low PD gains any additional correctional movements will not induce
vibration back into the system. On the other hand, very low gains are not desirable
because it will lead to poor position control performance. A tradeoff is to ensure the rigid
robot moves slowly enough that the interaction forces and torques generated are not
significant. The interactions can also be reduced by combining the vibration control
scheme with trajectories that help minimize inducing vibration (trapezoidal velocity
profile or command shaping, for example) [15,61,68,70]. It should also be noted here
that these results are based on the ideal rigid robot model; if nonlinearities or actuator

dynamics dominate the system response these results are not necessarily applicable. One
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representative case is discussed in Section 5.4.5 with a rigid robot dominated by
hydraulic actuators.

This indicates it is important to maintain separation of the performance of the two
control loops. The work shown here is a quick overview of the controller under typical
operating conditions. However, the position controller can interfere with the vibration
controller, as shown in Figure 5-6. In this case, the flexible system poles are drawn
towards the real axis, as desired. However, the position control poles are drawn towards
zero, which results in poor rigid robot control performance with increasing vibration
control feedback gains.

When the critically damped rigid position control poles are chosen at the natural
frequency of the flexible system and the zero chosen to cancel it, good performance
results for both position and vibration control, as can be seen in Figure 5-7. With a given
set of PD position control gains, the vibration control feedback gains can be selected to
achieve the desired effect of increased damping of the lightly damped flexible poles
while minimizing impact on the position control poles. In reality, perfect cancellation
would not occur, but the impact is minimal and in the form of slightly reduced damping

improvement or slight underdamped position control performance, as shown in Figures 5-

8 and 5-9.
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Example of interference between position and vibration control
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Root Locus with Better Selection of Vibration and Rigid Position Controllers
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Systen poles for increasing base feedback gains
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Effect of Choosing Vibration Control Zero too Large
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Effects of Choosing Vibration Control Zero too Small
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When velocity feedback alone is used, improved damping is also achievable over a
large range of gains K, as can be seen in Figure 5-10. For the flexible manipulator used
to develop these plots, the natural frequency of the lightly damped poles is approximately
2 Hz. The maximum gain recommended by equation 5-38 (assumes Bpi,=A=1) is
approximately K=12, while the maximum damping occurs at approximately K=440. The
limits on gains will further help ensure the vibration controller remains in regions where

increasing the gains directly increases damping.

Velocity Feedback, Ideal Rigid Robot
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operating range prescribed
by 5-38 4
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Figure 5-10
Root Locus for Velocity Feedback, Ideal Model
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5.4.3 Alternate Contoller Form

One alternative to the controller shown in Figure 5-2 would be one that prescribes the

vibration control via the desired joint positions, as shown in Figure 5-11.

Disturbance
Performance T ..—.__1 0, Fir X
X4 Index K;s+K, | B.(0)s’ B 1
—»  (Allows Ms* +Cs+K
Linearization) Position Rigid Coupled Rigid/ - X
Controller Robot Flex Dynamics Flexible manipulator
B0) .
B,(®) "

Flexible base vibration controller

Figure 5-11
Alternate Form of Vibration Controller

Consider the poles of the closed loop system with the vibration control feedback

gains as the multiplying factor (here velocity feedback is considered):

K,(K;s+K,)B.s’
(Ms* +Cs+ K)(B.s* +K ;s +K )

G(S)vibration control — (5_49)

The pole zero map of equation 5-49 is shown in Figure 5-12. Regardless of where the PD
position control gains are chosen, one of the poles will tend to move toward the three
zeros at the origin.  This tends to interfere with the vibration damping of the lightly
damped flexible poles and hence it becomes much more difficult to design the rigid
position and vibration controllers independently. This increased interference between the
controllers can also been seen by considering the poles of the closed loop system with the

position control gains as the multiplying factor:

124




Pole-zero map
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Pole-Zero Map of Alternate Controller
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B_s*(Ms* +CS +K)
The poles of the closed loop system will move toward the zero with increasing
position control gains. Assuming a lightly damped flexible system, for example with
M=20, C=1, and K=3000, in order to keep the zero driven by the vibration controller
in the left half plane requires very small values of K,B. (.0066). This reiterates the

increased interference between the vibration and position controllers.

125




5.4.4 Simulations of Single Degree of Freedom Controller

The single degree of freedom control law was simulated in Matlab Simulink and

takes the form shown in Figure 5-13:

P theta P| forceinput
To Workspace2 To Workspace

1 1 -

- P du/dt du/dt + Pbaseposition|

£ L 2152415843000
PD Controller Rigid Robot Interaction Flex Model To Workspace

Force
@}: 2 &
Kpv

du/dt

Kav

Disturbance On

Disturbance Off

Figure 5-13
Single Degree of Freedom Matlab Simulation

This model simulates a single link rigid robot mounted on a flexible base, which here is

simulated as a mass/spring/damper, as shown in Figure 5-14.

Disturbance : 0

.
e

Figure 5-14
Single Degree of Freedom Flexible Base Manipulator
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This simulates the last link of the robot shown in Figure 5-14 moving about an axis out of
the page. This model allowed a quick evaluation of the control scheme and its ability to
effectively damp vibration and maintain position control when a disturbance is applied to
the system. The response to a disturbance is shown in Figures 5-15 and 5-16. Figure 5-
15 shows much quicker damping with the inertial damping controller than without it.

Figure 5-16 shows the joint motion that was used to damp the base vibration.

Simulated Base Motion Due to an Applied Disturbance

02
ot X t /\
01

005

—&—With lrerdid Damging
5 -~~~ Fresviraion

Base position (m)

-005

-01 \
-0.15

-02

Time (s)

Figure 5-15
Simulated Base Motion Due to an Applied Disturbance

The scheme also allows the robot to move from one position to another and reduce
induced vibration significantly. Figure 5-17 shows the joint actuating about its desired
position in order to damp the vibration. The resulting base vibration is diminished with

the use of the vibration controller, as shown in Figure 5-18.
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Simulated Joint Motion Due to an Applied Disturbance
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Figure 5-16
Simulated Joint Motion with Inertial Damping Due to an Applied Disturbance
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Simulated Commanded Joint Motion
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Simulated Base Vibration Due to Commanded Joint Motion

Base velocity feedback alone can also be used and can be seen to be effective at dampng

vibration due to an applied disturbance, as shown in Figure 5-19.
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Figure 5-19

Simulated Inertial Damping Performance with Velocity Feedback
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5.4.5 Hydraulics Dominated Rigid Robot Model Control Performance

This section extends the previous section to consider the case of a hydraulically
dominated rigid robot model. More detail on the development of the model used may be
found in Chapter 7. The control loop takes the form of Figure 5-20, again linearized
using the equations in 5-39 with the exception of the third. Now the rigid robot is
commanded as an approximate velocity source. The joint position controller is left in a

general form here.

o, 1
] s _
0, PID k|6, p Fi ) X
pohin s+ [ 12 WGk
1
K,
K,B,
Figure 5-20

Actuator Dominated Linearized Rigid Robot Model

Now the characteristic equation takes the form:

PID(s)*K,, .\ K,s

characteristic equation=1+ >
. s(t;s+1D) (8 +D)(Ms* +Cs +K)

(5-51)

PID is the rigid robot proportional-integral-derivative position controller. In this case, if
T4 is small, the system can be considered an appoximate velocity source. The vibration

controller and resulting interactions take the form shown in Figure 5-21 (not considering
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the position controller for the moment). The rigid robot dynamics are shown on the top

line with the resulting flexible system dynamics on the lower line.

) X
9a Bs F}F 1 >
Ky 2
K, By _ vafc Ms*+Cs+K

Thibe = —_I(h_lB_1 (va)

Figure 5-21
Form of Vibration Controller for Hydraulics Dominated Robot
The open loop transfer function with the vibration control gain as the multiplying factor
is given by:

K pvsz
(Ms® + Cs + K)[s(t,s +1) + K, PID(s)]

(5-52)

G(S)vibration control —

With increasing vibration position feedback gain, the closed loop poles vary as shown in
Figure 5-22. Note increasing feedback gains K,y leads to an increase in damping of the
flexible poles over a relatively large range of gains. Also note the slight increase in
natural frequency of those poles. This type of rigid robot can provide an advantage
because often position measurements are more readily available than velocity
measurements and can avoid the need for numerical manipulation of the measured

vibration data.
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80 System Poles for Increasing Feedback Gain, Hydraulics Model
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Figure 5-22
Root Locus for Increasing Vibration Control Gains, Hydraulics Model
The other advantage here is that, in this case, it is beneficial to have stiffer position
control gains. In this case, the rigid robot position and vibration controllers can be
designed more independently than in the ideal model case. This can also be seen by
considering the poles of the characteristic equation in 5-51 with the position control gains
as the multiplying factor. The root locus plot is shown in Figure 5-23. It can be seen
that increasing position control gains has little effect on the lightly damped flexible

system poles.

% 2
G(s) _ PID*K,(Ms” +Cs + K)

) _ 5-53
position control (MSZ +CS+K)(TdS2 +S)+vaS2 ( )
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System Poles for Increasing Position Feedback
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Figure 5-23
Root Locus for Increasing Position Control Gains, Hydraulics Model

Simulations demonstrating the controller performance in multi-degree of freedom

operation will be discussed in Chapter 6.
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CHAPTER VI

SIMULATIONS

6.1 Introduction

Simulations were built in Matlab to test the ability of the control scheme to damp
vibration in multi-degrees of freedom. A macromanipulator was modeled assuming three
degrees of freedom of vibration and using a recursive Lagrangian technique as described
in Section 3.2. Two modes of transverse vibration were assumed in each planar
direction. In order to add a sense of realism to the simulation, the third mode in the z
direction was chosen based on assumed modes for torsional vibration. This was chosen
since torsional vibration is common for flexible links and, although it is not a concern for
single link macromanipulators, it will be a concern for multi-link manipulators. In
addition, since torsional vibration is at a higher frequency than transverse vibration, it
allowed an early assessment of the ability of the scheme to operate over a wide range of
frequencies. The resulting equations of motion for the flexible base take the form of
equation 3-19 with constant matrices. A three degree of freedom rigid robot was used for
damping and takes the form of the last equation in 3-27, while the interactions are given
by equation 4-1. The purpose of these simulations was to test the controller and gain

limits discussed in Chapter 5. In addition, the usefulness of the performance index
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described in Section 5.2 was tested to determine joint configurations better suited for
inertial damping.

The simulations were extended to the case of a two link flexible manipulator with a
six degree of freedom anthropomorphic/wrist micromanipulator. The flexible base
parameters were designed to give base motion similar to the two link experimental
testbed, discussed in Chapter 7. The modes modeled in the first link were four transverse
modes and one torsional mode, and one transverse mode was modeled in the second link.
The complexity of this model made the simulation time extremely long. It was decided
the three degree of freedom simulation with additional higher frequency modes added
would suffice to study multi-degree of freedom vibration damping and sufficiently
represented the testbed. Thus, the baseline simulations used primarily in this study had
three degrees of freedom of base vibration and used a three degree of freedom rigid robot
to provide the vibration damping.

Finally, an alternate configuration of a rigid robot with performance dominated by
hydraulic actuators was studied. As discussed in Chapter 5, with a small change to the
control scheme the controller performance is nearly identical to that of the ideal rigid
robot performance. However, the effect of variation in actuator performance can add
much more uncertainty to the system than the equivalent seen with the ideally modeled
robot with nonlinearities. In particular, the effect of increasing the servovalve time
constant and higher order dynamics were investigated in simulation, primarily prompted

by issues that manifested during laboratory testing.
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6.2 Single Flexible Link Macromanipulator with Anthropomorphic Rigid Robot

The overall schematic of the three degree of freedom simulation is shown in Figure 6-
1. Starting at the left of the model, trajectory inputs in the form of desired joint
trajectories are the inputs to the rigid robot. The trajectory inputs were either constant
joint positions, used to test the response of the vibration controller to a disturbance input,
or point-to-point trajectories. In order to test the use of the performance index in
predicting inertial damping performance, point-to-point trajectories were generated from
desired starting and end points. For each end point in the workspace, there are multiple
joint space configurations that can be used to reach it (provided the robot is not operating
at a kinematic singularity, which is assumed for this work). In each case, one of the joint
configurations gives predicted better inertial damping performance than the other ones.
Thus, two tracks were compared in these simulations; one is the track given by the
beginning and end points in the better joint space configurations, and the other is the
alternate joint space configuration track.

The rigid robot model was written in the form of an s-function [21], which gives more
flexibility in developing the system model and allows modeling nonlinearities. The
inputs to the rigid robot are the controller torques, which consist of the PID position
control torques plus the additional contribution due to the vibration controller. The total
input to each joint is given by:

T=PID(, —00)—1Dt0a)KX (6-1)
where PID is an independent proportional-integral-derivative controller (or some

variation such as PI or PD), ID is the inverse dynamics function defined in Equation 5-8,
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and K is the vibration control feedback gains. For these simulations, a reduced inverse

dynamics function consisting of only the interaction force effects was used, or
ID(9) = B.(6)B;' (6) (6-2)

The output of the rigid dynamics s-function are the states of the rigid robot, which are the
joint positions and velocities. The joint positions are fed back to the PID controller. The
joint velocities are differentiated to yield the joint accelerations and used to calculate the
interaction forces and torques, given by equation 4-1.

The flexible base is also modeled using equation 3-19 as an s-function, with inputs
the interactions due to the rigid robot. There is also an option to apply a disturbance
directly to the flexible base. Since the states of the flexible base are the generalized
coordinates, the disturbances applied in each direction are applied to all of the states
governing the motion in that direction. For example, an applied disturbance in the x
direction is applied to all of the generalized coordinates that affect the motion in that
direction. The states are the generalized coordinates and their rates, while the outputs are
the overall base motion in the x, y and z directions and their derivatives. The applied
distubances and interaction forces and torques are also output and recorded. All of the
states and variables are sent to the workspace where they can be stored and analyzed
later.

The mass, damping, and stiffness properties of the macromanipulator were
determined as described in section 3.2 and are given by the 5x5 matrices M, C, and K
from equation 3-19. The fully coupled system mass matrix representing the inertia

properties of the coupled system is given by:
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M,=M+A,+B,B'A (6-3)
where the coupling matrices are given by the appropriate equations in Appendix A. In

order to form these equations in the typical state space form, the state matrix is defined

as:

_ -1 _M—IK
A{ e = ] (64)

where I is the 5x5 identity matrix and Z is a 5x5 matrix of zeros. The system states are

given by:

Xz[pl )X XXX Sl]T (6-5)
where p; and p; are generalized coordinates representing two transverse modes in the x
direction, q; and q represent two transverse modes in the y direction, and s; represents a
torsional mode of vibration.

The input to the system is defined as:

(6-6)

M:'F+M'D
Input=[ r T :|

czZ

where CZ is a column of five zeros. D are disturbances that can be directly applied to the
system generalized coordinates and F is the 5x1 set of interaction forces and torques. For
most of the baseline simulations, only the interaction forces were calculated, but for some
simulations both interaction forces and torques were included as discussed in Section

6.3.2. In the general case, F is given by:

F=Fpt 2 (5 )

z=L
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where i represents the force or torque applied to the i® generalized coordinate and ¢

represents the associated mode shape. The resulting base motion in each direction is

given by:
X=p+p,
y=q,+49, (6-8)
zZ=13,

6.3 Simulation Results

6.3.1 Disturbance Rejection

First, the performance of the controller was tested in three degrees of freedom with
the inertia and nonlinear effects modeled, i.e. the terms in each of the three equations in
3-27 that contain base translational effects and rigid robot effects. This allowed an
assessment of the performance of the controller and the gain limits discussed in section
5.3. In these simulations, velocity feedback of the base vibration was used. The
performance of the vibration controller in a configuration of [45°20°,-70°], the
configuration shown in Figure 6-2, is shown in Figure 6-3. The controller gains were
selected near the upper limit prescribed by equation 5-38 in order to provide maximum
damping performance. The associated joint motion may be seen in Figure 6-4 and the
total end point positions in the x, y, and z directions are shown in Figure 6-5. Each joint
actuates about its operating point to provide the necessary interactions to damp the base

motion. As can be seen, the scheme requires relatively small joint motions to damp the

vibration.
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Figure 6
Anthropomorphic Robot Configuration [45°,20°,-70°]
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Simulated Base Vibration Due to an Applied Disturbance
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If the control gains are not chosen according to equation 5-38, the vibration controller
will still remove the overall energy from the system but it is much less effective. As can
be seen in Figures 6-6 and 6-7, when the control gains are chosen at three times the
recommended limits, the joint amplitudes are much larger and the controller works less
effectively. This also verifies the reduction in damping predicted in Figure 5-10 when
the feedback gains are increased past a certain point. These results verify that there

should be appropriate limits placed on the feedback gains for best vibration control

performance. Note that the overall energy is still removed from the system, and
relatively quickly compared to the free vibration case shown in Figure 6-3 (note the

different y-axis scales between the two figures).
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Figure 6-6
Simulated Base Vibration Due to an Applied Disturbance, Large Vibration Control Gains
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Next, the controller was tested in a worst-case configuration where the nonlinear
effects are expected to be large compared to the inertia effects, as predicted by Figure 4-
21. In a configuration of [45°,20°,-10°], which is the configuration shown in Figure 4-22,
the resulting base vibration can be seen in Figure 6-8. The associated joint motion may
be seen in Figure 6-9. Note the slight increased vibration in the z direction (third plot in
Figure 6-8). This indicates that with the vibration controller in place motion by any of
the joints creates interactions in all of the vibrational degrees of freedom of the base since
the base model is fully coupled. Thus, all of the joints used for inertial damping must
operate cooperatively to damp the overall vibration in the system. As expected, the

vibration controller is less effective but still provides more damping than the undamped
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case. This does indicate, however, that the control gains have to be carefully selected,

especially in these regions, in order to ensure successful performance.

0.2 Base Vibrationx [ no vibration control

—— inertial damping

Position (m)

Position (m)

Position (m)
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Figure 6-8
Simulated Base Vibration with Robot in a Region with Large Nonlinear Effects

6.3.2 Interaction Torque Effects

Interaction torque effects were originally included in simulations but later removed
due to the time and complexity involved. In addition, implementation of the torque
effects in the inverse dynamics would be extremely difficult to implement on the
experimental system. The combined performance index measure of equation 4-3, shown
in Figure 4-11, indicated the torque effects should be relatively small. However, anytime
the interaction forces are prescribed, the interaction torques are also commanded. This

section describes the effect of including these effects versus the interaction forces only.
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Simulated Joint Motion with Robot in a Region with Large Nonlinear Effects

As an example, consider the disturbance rejection capability of the control scheme in
a configuration of [45°,45°,-70°]. This is similar to the configuration shown in Figure 6-
2 except the second link is slightly further down. Both interaction force and torque
effects (equations A-5 through A-7 and A-14 through A-16) are compared with
performance when only the interaction force effects are considered. Both results may be
seen in Figure 6-10. It can be seen that the vibration control performance is affected very
little by considering the interaction force effects only. Thus it was considered a
reasonable approximation in most workspace locations to model the full interaction
forces only.

On the other hand, consider the robot in a configuration of [-90°,45°,-70°] (same

configuration for the last two links, but now joint 1 is rotated 135°). The same
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comparison is made and shown in Figure 6-11. The vibration controller still removes
energy from the system in both cases, but the performance with and without the
interaction torques is very different. An area of future research is recommended to
investigate in more detail the interaction torques and determine appropriate
simplifications to enable modeling them in a reasonable manner for simulation and
experimental implementation. One possible reason for this change in performance is

discussed in Section 7.5.3.
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147




Vibrationx | ----- Forces

0.05 T . T T ' ™~ — Forces and Torques
E |
c
L8
'}
o]
o
_0'05 t 'l 1 1 1 L ] 1 1
0 2 4 6 8 10 12 14 16 18 20
0.2 T T T T T T T T
—_ Vibration y
£
[
8
‘@
o
a
_0.2 L 1 L 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
0.02 . . . .
E
S o -
.“a:)
(o]
a
_0-02 N 1 1 I L ] 1 1 L
0 2 4 6 8 10 12 14 16 18 20
Time (s)
Figure 6-11

Simulated Base Vibration with Interaction Forces and Torques Modeled,
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6.3.3 Multi-Link Macromanipulator Simulations

Simulations were extended to a multi-link case with a macromanipulator model that
consisted of twelve states. For the first link, three transverse modes were modeled in the
x direction, one transverse y mode, and one torsional mode. One transverse mode was
modeled for the second link. These were chosen to be similar to the modes seen on the
actual testbed and will be discussed in Chapter 7. A six joint rigid micromanipulator was
modeled, but only the first three links were used for active damping, again similar to the
testbed. Due to the complexity and simulation time required, it was decided to use the

single link model with additional higher modes of vibration added.
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6.3.4 Combined Position and Vibration Control Performance

The second goal was to test the ability of the performance index to predict damping
performance. In this case, point-to-point rigid robot motion was commanded to simulate
the robot end effector moving from point-to-point in the joint workspace. The
performance index was used to choose the best inverse kinematics track for inertial
damping. The preferred track (trajectory 1) along with the alternate inverse kinematics
track (trajectory 2) are shown in Table 6-1. Note the other two inverse kinematic
solutions yield identical results since for the anthropomorphic robot the damping
performance only varies with the configuration of joints 2 and 3. Also, note these
simulations involve commanded rigid robot motion only, while the macromanipulator
joints are assumed fixed. Thus, the induced vibrations are due to the motion of the rigid
robot only. In reality, vibration would also be induced by macromanipulator motions,
which would create larger amplitude initial disturbances similar to those discussed in
section 6.3.1. However, this research considers the flexible base to be unactuated, which
is a limited case of the general macro/micromanipulator problem.

The resulting base vibration can be seen in Figures 6-12 through 6-14. In each case,
the bottom plot shows the base vibration due to point-to-point motion of the robot
following trajectory 2 in Table 6.1 without vibration control. The third plot shows the
same trajectory except with the vibration controller. The second plot in each figure
shows no vibration control with the robot following Trajectory 1, and the top plot shows

the robot following trajectory 1 with the vibration controller.
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Table 6-1
Simulated Point-to-Point Motion

End Point 4 -2 -2 4 4
(m) 4 4 -2 -2 4
4 4 4 4 4

Trajectory 1 45° 117° -135° -27° 45°
5° 0° 2° 0° 5°

60° 83° 104° g83° 60°

Trajectory 2 45° 117° -135° -27° 45°
65° 83° 107° 83° 65°

-60° -83° -105° -83¢ -60°

Time (s) 0-1 5-21 25-41 45-61 65-80

The associated joint motion of the first link can be seen in Figure 6-15 during the first
leg of motion (movement from 45° to 117°). Plots of all of the joints for all of the cases
may be seen in Figure 6-16 (trajectory 1 is labeled with “PI”). One clear tradeoff is that
the joint position is affected when under inertial damping control. This is especially
pronounced at the beginning and end of each leg, and is especially noticeable between 5
and 10 seconds in Figure 6-15. This is expected since the joint accelerations are largest
when the robot starts and stops. The motion, however, is used to quickly damp the
vibration, as shown in the top plot in each of Figure 6-12 through 6-14. The other

tradeoff is the increased amplitude of vibration induced by moving into the better joint
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configurations. This is expected since these regions allow more coupling, which also
allows the robot to create larger disturbances. However, these regions also allow more
effective coupling to damp the vibration more quickly, while the robot in the alternate
track is much less effective at vibration damping. The conclusion is that the robot
modeled by equation 3-27, even with nonlinear effects included, works effectively at
damping vibration throughout the workspace provided the robot is able to operate in joint

space configurations better suited for inertial damping.
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The total end point position in the x and y directions can be seen in Figures 6-17 and 6-18
respectively. The goal is that, provide the rigid robot is controlled so 0, converges to
O4es, the vibration controller will damp the base vibration, as shown in Figures 6-12
through 6-14. Thus, the total end point position will also be controlled and will have less

vibration than the system without the vibration controller.
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Simulated Total End Point Position y During Point-to-Point Motion

Another interesting phenomenon occurs in multi-degree of freedom damping
simulations that was not predicted by the ideal single degree of freedom cases discussed
in section 5.4. Observe the base vibration shown in Figure 6-12 with the vibration
controller in place (top plot). In this simulation, the vibration control gains were
prescribed at the upper limit given by Equation 5-38. Note the decrease in frequency of
vibration from approximately 1.5 Hz (undamped) to approximately .57 Hz (with inertial
damping). When the same situation was simulated with vibration control gains reduced
in half, the damped frequency was slightly higher (.61 Hz) and the damping improvement
is slightly better, as shown in Figure 6-19.

Recall these simulations include nonlinearities in both the rigid and coupled

dynamics, the flexible base is fully coupled and models multiple modes of vibration, and
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the simulations are for a three degree of freedom rigid robot. The root locus of the ideal,
linearized case analyzed in Figure 5-10 and shown again below in Figure 6-20, only
approximates the true multi-degree of freedom case. These results could indicate several
things. First, it could indicate that the maximum damping available occurs at a much
lower gain than predicted (case 1). It could also indicate the flexible poles move away
from the jo axis with a steep slope (case 2), which would result in the observed decrease
in frequency of vibration with increasing vibration control gains (case 2). Note Figures
5-4 and 5-9 predicted this behavior could occur.

As noted previously, the rigid robot and vibration controllers need to be designed
carefully to ensure ideal performance predicted by Figure 5-10. When nonlinearities and
other inaccuracies are included, even in simulation, this ideal performance may not occur.
It is likely achievable with the proper modification of the rigid joint controller and/or
lower vibration control gains. Nevertheless, the multi-degree of freedom simulations do
indicate the damping controller can remove overall system energy and improve vibration

performance over the system with no vibration damping.
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6.4 Hydraulic Actuator Effects

The hardware implementation was performed on a hydraulically actuated robot. In
order to enhance the clarity of the discussion and focus on the key issue at hand, a single
degree of freedom case is discussed here. The simulation is shown in Figure 6-21. The
actual robot is hydraulically operated and the joint performance was experimentally

determined to be modeled as:

o) _ K,

7(s) s(r,s+1) (6=9)

which is typical of hydraulic actuators [50,48,75]. For more information on the actual

robot used in laboratory testing, see Chapter 7.
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Figure 6-21

Hydraulics Dominated Single Degree of Freedom Model
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First, the baseline damping performance for the inertially damped and undamped
cases is shown in Figure 6-22 along with the joint motion in Figure 6-23. As these
figures indicate, provided the joint acts as a velocity source the control scheme works
well. Note the joint motion is nearly out of phase with the vibration displacement as
commanded, allowing the vibration energy to be absorbed. Joint 2 was chosen for this
particular test case because it demonstrated the largest amount of phase lag. Next, the
same situation was simulated except with larger 14 (as defined in equation 6-9), which
increases phase lag. The resulting base vibration and joint motion is shown in Figure 6-
24. As shown in 6-24, the phasing of the joint motion relative to the vibration has shifted
and no longer effectively removes vibrational energy. As can be seen, the effectiveness
of the scheme decreases, but it is still effective. Provided the actuator can truly be
modeled as a second order system, the phase lag will be no greater than 90° and the
vibration control scheme will still work, although the more phase lag the less effective it

will become.
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Baseline Performance with Joint 2 Hydraulics Model
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Phasing of Joint Motion and Base Vibration
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Effect of Increasing Phase Lag on Hydraulics Model Vibration Performance

' On the other hand, if the hydraulic dynamics are actually higher order, as has been
proposed by some authors [50], larger phase shifts may result and create problems using
this scheme for vibration control. As as example, consider the hydraulic actuator modeled
as a third order system. The phasing between the joint motion and the base vibration is
shown in Figure 6-25. In this extreme example very large phase shifts can cause
detrimental effects. The conclusion is that, when the robot model is not given by the
typical robot model (third equation in 3-27), it is important to perform system
identification testing to get an accurate robot model. Provided the robot dynamics are
reasonably well known, appropriate motion can be commanded and/or cancelled in the

inverse dynamics function.
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CHAPTER VII

EXPERIMENTAL WORK

7.1 Introduction

This chapter describes the experimental testbed and test results. The testbed
consisted of a two flexible link macromanipulator with a six degree of freedom
anthropomorphic/wrist rigid robot mounted to its last link. The experimental work

consisted of two primary areas:

1) Experimental verification of the interaction forces and torques and conclusions
described in Chapter 4. The main area of interest was on the controllable interactions due

to the rigid robot.
2) Implementation of the vibration control scheme on a multi-degree of freedom testbed

This chapter will end with a discussion on issues that arose during hardware

implementation and recommendations for improving the existing testbed.

7.2 Experimental Testbed

A schematic overview of the laboratory setup is shown in Figure 7-1. One of the
common problems with experimental results performed on macro/micromanipulators is

they lack the complexity of real-world applications [10]. For this reason, the testbed was
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intentionally designed to be as realistic as possible. The testbed was modified from a
single link flexible beam/three degree of freedom micromanipulator, used for research in
[42], to a two flexible link/six degree of freedom micromanipulator. The real-time
control is handled by VxWorks Real Time Control Software, Version 5.2 [85,86]. All of
the control functions that interface with VX Works were written in C [29,43]. The
control is performed using a Motorola 68040 Microprocessor and Acromag AVME D/A,
A/D, and DIO boards for processing of the various signals [44,67].

The rigid robot consists of a hydraulically operated anthropomorphic robot with an
IBM 7565 wrist mounted to its last link [27]. The anthropomorphic robot is operated by
Micro-Precision Textron SS-.5A double vane, SS-.5A single vane, and SS-1A double
vane actuators, while the wrist is operated by similar vane actuators. The servovalves are
Moog series 30 and 31, which operate at a constant maximum current of 15 ma [51,76].
The outgoing voltage signal from the D/A board is first sent through voltage to current
amplifiers before the signal is sent to the valves. US Digital optical encoders are used to
measure the joint position of the first three links of the robot, while potentiometers are
used for the last three joints. Vibration is measured by PCB Accelerometers, one
mounted along each axis (x, y, and z) [57]. During the initial part of the experimental
work, a six axis ATI Delta 9105-T Force/Torque sensor was used to measure interaction

forces and torques at the base of the rigid robot [1].
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The range of motion of each joint, with coordinates defined in Figure 7-1, is:

~90° <6, <180°
0" <6, <95°
~110° <6, <110°
~0° <6, <270°
~90° < 6, <90°
~180° <, <180°

All angles are defined such that 0° is along the x axis, except for joint 2 which is defined

non-conventionally to be at 0° when the arm is up horizontally and 90° when straight

down.

165




9%

’
K

dnjog A1ojeroqe ]

1-L em31g

Addns samod 1apswopusyed

97z om \
52

'}

°z

sdumd
QUBA/SIAJBA
1¢ seues 300

ox

\/Vtﬁ/v

Josuas
& @“ snbioyao103
sixe 9 ILV
Kiddns AN
wany 154 0001 ¢——_Jojendey
-0I0BIN
Ajddng oynerpA

a4 7 7/

PUS J)IUO0LINY

ﬁwu._..w Nu ——— Pog v/a &

B)Bp
anbxoy/ed104

B)8p jod

o

J19JoUI013[320Y \ pisoq AV _l/

sJapooug
1epdo
pmay  4——p PISOE O %
iuno)

sdws

1055330.1d0I[JA] B]OIOJOIN

sng FNA

166



7.2.1 Rigid Robot Independent Joint Controllers

The dynamics of the experimental robot are dominated by the hydraulic valves. The
experimental rigid robot is shown in Figure 7-2. Each joint was independently controlled
with a proportional-integral (PI) controller and a dead zone inverse (DZI), as shown in
Figure 7-3. The PI gains were chosen based on the hydraulic valve models, which were
experimentally determined by open loop system identification testing. DZI is a dead-
zone inverse that was designed to compensate for hydraulic actuator dead zone. It is not
the common dead zone inverse as described in [74], but only includes an additional
constant signal output to counter the effects of the valve dead-zone (zero output is offset).

The rigid robot torque equation, or last equation in 3-27, is given by the actuator
specific model. In the case of Moog servovalves, a first order approximation for low

frequency performance was used and is given by [75]:

o) K

i(s) 7,841 (7-1)

Where:
Q=flow rate (cubic inches)
i=current input (ma)

K=servovalve static flow gain at zero load pressure drop (cubic inches/ma)
T4=apparent servovalve time constant (sec)
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Experimental Rigid Robot
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Figure 7-3

Independent Joint Controller
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However, the relationship between the commanded computer output, T, and the resulting
joint motion, 6,, was needed. K generally depends upon the rated flow and input current,
while 14 depends on the flow capacity of the valve. Since the flow rate is proportional to

robot velocity and current proportional to the D/A output to the robot, the rigid robot

model becomes:

o) __ K,
7(5) - s(z,s+1)

(7-2)

Open loop tests were performed to determine the appropriate modeling constants for each
joint. One representative example may be seen in Figure 7-4, which shows the response
of joint 1 to an output signal of —100, which corresponds to an output voltage of
approximately -.54 volts. These tests were performed over a range of output values
expected for inertial damping control and the results averaged over the range of values.

The resulting model parameters may be seen in Table 7-1.

Table 7-1
Model Parameters for Second Order Approximation of Moog Servovalves
Ky T4
Joint 1 -.003459 .00379
Joint 2 -.00076 .03445
Joint 3 -.001775 .017704
Joint 4 .005158 .031648
Joint 5 .00394 .00356
Joint 6 .006 .0248
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Figure 7-4
Joint 1 Response to D/A Output of -100

An additional concern with the hydraulic actuators is an apparent dead zone behavior
at low output values. In this case, the phenomenon manifested itself as a lack of response
over a range of outputs. A representative example may be seen in Figure 7-5. This plot
clearly shows that when the actuators are operating at a small range of output values, the
joint does not move. When it operates outside of this range the joint responds at the
approximate velocity predicted by Ky. The first three joints demonstrated a smaller dead
zone than the last three joints and were the joints used for active damping in this research.
The dead zone has little effect on the performance of the damping controller in this case,
but may become more of an issue when additional links are used in future work. In

addition, the first three joints of the robot demonstrate a constant null bias and will drift
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to the upper or lower joint limit. Unlike many other Moog servovalve models, these do

not have a null bias adjustment so a constant feedforward signal was added to the

controller to compensate for this. The resulting compensator takes the form of equation

7-3, with the parameters shown in Table 7-2.

Ifr>0r=7+b+d

Ifr<0r=7-b+d (7-3)
Table 7-2
Feedforward Dead Zone and Drift Compensator

br bl d
Joint 1 38 -38 -20
Joint 2 17 -17 12
Joint 3 31 -31 23
Joint 4 70* -70%* 0
Joint 5 150* -150* 0
Joint 6 130* -130* 0

* Selected slightly lower than measured values to prevent amplification of potentiometer noise

The joint controllers were selected for reasonably good performance using a root
locus design method and the performance was experimentally refined by tuning. The

resulting gains may be seen in Table 7-3.
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Figure 7-5

Dead Zone Phenomenon in Hydraulic Servovalve

Table 7-3
Selected Gains for Independent Joint Controllers
K, K
Joint 1 2000 200
Joint 2 2500 250
Joint 3 1000 100
Joint 4 1200 720
Joint 5 1400 420
Joint 6 1500 1350

As an example, consider the root locus plot of the selected controller for joint 1, shown in
Figure 7-6. The zero at Ki/K, was chosen near the two poles at the origin in order to

provide fast, overdamped performance.

Using this ratio of Ki/K,, the gains were

increased so the robot operated smoothly for point-to-point motion.

designed similarly except with more integral gain. This was selected to provide more
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disturbance rejection since its observed lab performance was more nonlinear and it
demonstrated a much larger dead zone region than the anthropomorphic robot.

The anthropomorphic robot was originally designed by Cannon [15] so mass
properties were available. Mass properties of the wrist were estimated. The inertia
properties and dimensions of the robot are given in Table 7-4. The coordinate frames are
as defined in Figure 7-1, with dimensions defined per the Denavit and Hartenberg

convention [61] as detailed in Table A-1 and A-3 in Appendix A.

Root Locus Design for Independent Joint Pl
200 T : . ;

|
150+

100}

50+

Imag Axis
o

-60}

-100}

-150}

-200

-250 -200 =150 -100 -50 0 50
Real Axis

Figure 7-6
Root Locus Design for Independent Joint Controllers
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Table 7-4

Dimensions and Properties of Experimental Robot

Link i 3 d; (m) m; (kg) r(m) | Ly (kg-m’) | Ty (keem') | Lykg-m’)
0 (inert) 0 3302 16.0320 2413 .1920 .1933 .0936
1 0 .1969 5.0264 .1354 .0299 .0114 .0270
2 .4001 0 5.5799 2924 .0171 .0799 0728
3 .12065 0 1.488 .09721 .019434 .0186695 .007131
4 0 1 26176 .05 .000230 .000174 .00007332
5 0 d 2.1095 .05 .0059179 .006032 .0019024
6 0 .155 1.7103 .0775 .0056475 .004396 .0017209

7.2.2 Macromanipulator

The macromanipulator was assembled from two hollow T6-6061 aluminum beams in an
L-shape and mounted vertically from an I-beam mounted to the ceiling of the laboratory.
The mounting and attachment to the I-beam is shown in Figure 7-7. The

anthropomorphic robot with wrist is mounted to the end of the second link as shown in

Figure 7-8.
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igure -
Macromanipulator Base Mounting

The macromanipulator parameters are:

do=.1412875 m (outside diameter)

di=.134188 m (inside diameter)

p=2710 kg/m’ (material density)

L1=4.6482 m (length link 1)

1,=1.2192 m (length link 2)
=6.8948x10' Pa

m;=9.76 kg

m;=2.56 kg
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Figre 7-8
Overall Macro/Micromanipulator Testbed

The Lagrangian approach described in section 3.2 was used to model the
macromanipulator, with the assumed modes for transverse vibration given by equation 3-
5 and torsional modes given by equation 3-9. The system was modeled as described in
Chapter 6. The inertia matrix is fully coupled, while the stiffness matrix is diagonally
dominant with coupling between modes in each direction.

Lab testing of the macromanipulator allowed some simplification of the model. This
allowed scoping the problem to a suitable size to allow simulation in a reasonable
timeframe. The configuration results in dominant and highly coupled transverse modes

and one torsional mode as well as additional higher frequency system modes. As an
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example, consider the measured acceleration in the x direction due to an applied
disturbance in the x direction, shown in Figure 7-9, along with the frequency response of

the data in Figure 7-10 [5,7,21].

Free Vibration x
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Figure 7-9

Free Vibration x Due to an Applied Disturbance x
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Figure 7-10

Frequency Content of x Vibration Due to an Applied Disturbance x

The acceleration data tends to amplify the higher frequency signals, while the lower
frequencies are more of a concern for end point positioning due to their larger amplitude.
A more representative measure of the vibration was chosen to be the base position, which
requires double integration of the accelerations. It has been noted elsewhere challenges
associated with integration of piezoelectric accelerometer data due to low frequency drift
[66,84]. A recommended solution is to high pass filter the data prior to integration. For
presentation purposes, the raw acceleration data was filtered using a 4™ order high pass
butterworth filter with a cutoff frequency of .8 Hz [30,54] before double integration.
Note this would not be an option for real-time control since phase shift would be
introduced in the fundamental modes. Figures 7-11 and 7-12 show the base position and

associated frequency content.
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The testbed has a high degree of coupling between modes. Consider the y vibration
due to an applied disturbance in the x direction, shown in Figure 7-13. Since these two
fundamental modes of the 15 foot link are very close in frequency (1 and 1.2 Hz), this
sometimes created a beating phenomenon, which further complicated the system
dynamics. In general, excitation of any of the modes tended to excite one or more
additional modes in the system. In order to quantify the performance with and without
vibration control, free vibration damping ratios were obtained from the log decrement of
the position data when a single mode was dominant. For higher system modes and in
cases of multiple mode excitation, the frequency response plots were used to determine
the damping ratios. The direction of excitation and observed modes of excitation are
summarized in Table 7-5. Table 7-6 summarizes the frequencies and damping ratios of

the prominent modes.

Table 7-5
Modes of Vibration on Experimental Testbed
Direction of Excited Modes Excited Modes Excited Modes
Applied Position x Position y Position z
Disturbance (Hz) (Hz) (Hz)
X 1,4.2 1,1.2 1,1.2
y 1,1.2,4.2 1.2,7,9.5 1.2,7,9.5
yA 1,1.2,4.2 1.2,7,9.5 1,1.2,7,9.5
general 1,1.2,4.2 1.2,7,9.5 1,1.2,7,9.5
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Position y Due to an Applied Disturbance x
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Table 7-6
Damping Ratios for Macromanipulator Free Vibration Modes
Mode Frequency Damping
(Hz) Ratio
Link 1 1 .0186
transverse x
Link 1 1.2 .0067
transverse y
Link 1 4.2 .0087
torsion
Higher Mode 7 .00513
Higher Mode 9.5 .00281
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7.3 Interaction Forces and Torques

The first part of the experimental work was intended to verify the method used to
predict the interaction forces and torques and verify work discussed in Chapter 4. Recall
the controllable interactions are given by:

F,=B,0)0+N.(0,00,)+C.(0)§ +N,.(q,4,0,0)
Typ = Bo(0) + N,o(0.0,0 )+ C,o@)i +N,(.(4,6.0,0) 74

The directly controllable interactions that were the subject of Chapter 4 are given by
the first two terms in each equation. However, the actual interaction forces and torques
are governed by all of the effects, including those due to the motion of the
macromanipulator. In order to isolate the effects due to the micromanipulator, the base of
the macromanipulator was braced as shown in Figure 7-14. An ATI six-axis force/torque
| sensor [1] was mounted between the micromanipulator and the base of the
macromanipulator. Input signals were sent to the rigid robot similar to the motion
expected during active inertial damping, where the motion is harmonic and given by the

last equation 5-12.

7.3.1 Single Degree of Freedom Interaction Forces and Torques

The first goal of this work was to determine if the relationship given by equations
4-4 and 4-8, governing the inertia interaction forces and torques, provide a reasonable
approximation of the dominant interactions. Masses and dimensions of the rigid robot

were estimated as given in Table 7-4. In addition to proving the validity of the
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relationship for the interactions, it also provided an opportunity to obtain mass property
updates. The first part of this work involved actuating each joint independently, with
constant amplitude sine inputs at 1 and 2 Hz, approximately the lowest natural
frequencies of interest on the tested. It was expected that this would create dominant

inertia forces and torques since:

0 =20°*"cos(2* z*1f)
180

4

- ~14 rad /s’

i

max

~5 rad/s’ (7-5)

An example of the predicted and measured interaction forces and torques due to joint one
can be seen in Figures 7-15 and 7-16, respectively, in a configuration of [-90°, 45°, 45°].
This configuration was chosen because it is near the singularity region, as predicted in
Figure 4-5, but not near enough that it should affect the ability of the robot to create
effective interactions. Thus this configuration would be representative of performance
throughout most of the usable workspace (performance would be better than this in most
locations). The nonlinear force effects are included in Figure 7-15 for magnitude

comparison purposes.
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Predicted and Measured Interaction Forces at the Base of the Micromanipulator Due to

Joint 1 Harmonic Motion

In order to quantify the results, a goodness of fit parameter was chosen [6] where:

, _ Bl - E(x)Ely)
o,0,

~1<p<l (7-6)
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Figure 7-16

Predicted and Measured Interaction Torques at the Base of the Micromanipulator Due to
Joint 1 Harmonic Motion

Here x represents the measured interaction forces or torques and y represents the
predicted interaction forces or torques calculated from the inertia effects only and oy and
oy are the standard deviations of each. Table 7-7 summarizes these test cases, the matrix
terms isolated by each test case, and the resulting goodness of fit. In general, the fits are
very good with a few exceptions involving actuation of the third link only. The reason
for this is because when these tests were performed, link 3 had little inertia
(approximately 32.9 kg or 7.4 1bs). In order to create enough inertia to create interactions
detectable by the force/torque sensor, a relatively large joint amplitude had to be used.

Nevertheless, the resulting interaction torques were still only around +/-60.8 N-m (+/- 5
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in-1bs). Either larger amplitudes would be needed for joint 3, or additional inertia would

need to be added. The latter approach was taken for this research.

Table 7-7
Single Degree of Freedom Interaction Force and Torque Test Cases
Test Joint Configuration | Amplitude | Frequency Matrix p
Case Actuated (Degrees) (Degrees) (Hz) Parameters

Isolated
1 1 -90,45,45 10 1 Bq(1,1) 989
B(2,1) 984
2 1 -90,45,45 10 2 B«(1,1) 979
B(2,1) 977
3 2 0,90,45 10 1 B«(1,2) 985
B:0(2,2) .990
4 2 0,90,45 10 2 Bg(1,2) 971
B:(2,2) 969
5 3 0,90,0 20 1 B«(1,3) 967
B(2,3) 987
6 3 0,90,0 20 2 B«(1,3) 973
B:«(2,3) .608
7 1 0,45,45 10 1 Bi(2,1) 977
By(1,1) 978
8 1 0,45,45 10 2 B«(2,1) 985
By(1,1) 979
9 2 -90,90,45 10 1 B«(2,2) 977
By(1,2) 978
10 2 -90,90,45 10 2 B«(2,2) .966
B.o(1,2) | .976
11 3 -90,90,0 20 1 B«(2,3) 973
: By(1,3) 962
12 3 -90,90,0 20 2 Bi(2,3) 973
B.o(1,3) 973
13 2 0,45,45 10 1 B«(3,2) 975
B:(2,2) 969
14 2 0,45,45 10 2 B«(3,2) 940
' B.0(2,2) 991
15 3 0,90,75 20 1 B«(3,3) .969
B.0(2,3) 974
16 3 0,90,75 20 2 B«(3,3) 978
B:o(2,3) 727
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7.3.2 Multi-Degree of Freedom Interaction Forces and Torques

The next part of this effort involved extending this to interactions due to multiple
joints actuating simultaneously, which was required to implement inertial damping in
multi-DOF. Figure 7-17 shows an example of the interaction forces created by joint 1
actuating at 1 Hz, joint 2 at 1.5 Hz, and joint 3 at 2 Hz in a configuration of [45°, 45°,
60°]. It was predicted that the inertia effects would be dominant in this configuration and
the effect of higher harmonics would be negligible. The associated frequency response is
shown in Figure 7-18. Some higher harmonics are noticeable in the interactions but with

increasing frequency quickly become less important compared with the inertia effects.
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Figure 7-17

Predicated and Measured Interaction Forces Due to Joints 1,2, and 3 Actuating
Simultaneously

188




Frequency Content of Force x Data
4000 T T T T T T T T

3500 -

3000 - 1

2500 -

. 2000 -

F &

1500 -

1000

500 \M b
0 L ]\-. A 1 il L L 1 1

0] 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

Figure 7-18
Frequency Content of Force y Data Due to Joints 1,2,and 3 Actuating Simultaneously

Figure 4-5 predicted poor inertia performance near the inertial singularity region and
Figures 4-13 and 4-14 predicted the nonlinear coriolis effects would be more of a concern
in these regions. Consider the robot in a configuration of [0°, 87°, 56°] (shown in Figure
7-19) with joint 1 actuating at 1 Hz and joint 2 at 1.5 Hz. The resulting interaction forces
along with predicted total forces (inertia plus nonlinear) in the y directions are shown in
Figure 7-20. The total interaction forces due to the actuation of joint 1 is small in this
configuration, so the force in the y direction, as expected, is relatively small. The coriolis
effects are expected to be large in this region, which would result in combinations of the

harmonics at approximately .5 and 2.5 Hz, in this case. The frequency content of the
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measured force data is shown in Figure 7-21 and it can be seen that and the higher

harmonics have more of an effect here.

Figure 7-19
Anthropomorphic Robot Configuration [0°, 87°, 56°]
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Figure 7-20
Interaction Forces Due to Joints 1 and 2 Actuating Near an Inertial Singularity
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Figure 7-21
Frequency Content of Force Data due to Joints 1 and 2 Actuating Near an Inertial
Singularity

As an example of a region where nonlinear centrifugal forces are expected to be
larger, consider the configuration [0°,38°,0°], shown in Figure 7-22. In this
configuration, it was predicted by Figure 4-14 that the centrifugal force effects would be
greater. The resulting force data in the x direction and frequency content are shown in
Figures 7-23 and 7-24. Joints 1, 2, and 3 are actuating harmonically at 1, 1.5, and 2 Hz,
respectively. In this case, the interaction force effects in the x direction will be primarily
due to joints 2 and 3. As discussed previously, joint 3 has relatively little inertia so it was
expected the higher harmonics consist mainly of 3 Hz content, or twice the frequency of
joint 2. Now consider the interaction torques and associated frequency content, as shown

in Figures 7-25 and 7-26, respectively. Here instead of the twice the frequency of
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actuation, the higher harmonics consist of the combination of frequencies, indicative of

increased coriolis effects, as expected.

Figure 7-22
Anthropomorphic Robot Configuration [0°,38°,0°]
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Figure 7-23
Interaction Forces with Large Centrifugal Effects Due to Joints 1, 2, and 3 Actuating
Simultaneously
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Figure 7-24
Frequency Content of Force x data with Large Centrifugal Effects
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Figure 7-25
Interaction Torques due to Joints 1, 2, and 3 in Configuration (0°,38°,0°)
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Figure 7-26
Frequency Content of Interaction Torque Data Due to Joints 1, 2, and 3

There are two main conclusions to be drawn from this portion of the experimental
work. First, the form of the interaction forces and torques given by equation 4-1 is
valid, regardless of the rigid robot dynamics. In the case of this experimental work, the
joint torque dynamics are dominated by the hydraulic servovalves and are hence very
different from the ideal robot model cited in most robotics texts. However, the model
for the interaction forces and torques is still valid. The second important point is that,
regardless of the orientation of the robot, higher (and sometimes lower) harmonics will
be generated by the robot. If higher system modes exist, which will be the case with a
continuous system, higher frequency modes can become excited. However, the relative

importance of the harmonics varies throughout the workspace. With a good
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understanding of these issues, either these regions can be avoided or the control gains
selected to ensure overall energy removal from the system. Note this part of the work
has assumed constant joint amplitudes, and the ratio of the inertia to nonlinear effects
will improve as the vibration is reduced. The next step was to proceed forward with

implementation of the vibration controller described in Chapter 5.

7.4 Multi-Degree of Freedom Vibration Damping

The final goal of this research was to extend the inertial damping control scheme to
multiple degrees of freedom. This is a challenging extension from previous work at
Georgia Tech for two main reasons. First, the testbed now has highly coupled modes and
general system motion in many directions is possible, as discussed in Section 7.2.2.
Previous testbeds at Georgia Tech demonstrated clear decoupled vibration i.e. the two
transverse fundamental modes of vibration of the beam were at different frequencies and
there was little coupling between the two. Second, the use of three links of the
micromanipulator requires cooperation between joints because links 2 and 3 of the
testbed robot both create interaction forces and torques in the same plane. Hence, their
movements have to be cooperatively prescribed in order to damp the motion because
damping motion by either one requires motion in the other. This forces accurate
modeling and a better understanding of issues that may result when the robot model
contains inaccuracies.

The block diagram for the multi-degree of freedom case can be seen in Figure 7-27.
The parameters for the assumed rigid robot model were given in Table 7-1 and the

feedforward and drift compensators were given in Table 7-2 (only the first three joints are
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shown in the block diagram below since they are the only joints used for inertial
damping). The rigid robot PI gains chosen were given in Table 7-3. The ID (inverse

dynamics) function is defined as:
ID=B_B;'(6) (7-7)
ID;; in figure 7-27 is the i™ row and jth column of the resulting matrix. The rigid robot

actuators respond as a near velocity source so B: is given by:

L0 o
Khl
B=| 0 —— 0 (7-9)
Kh2
L Kh3 _

Bi(0) is given by equation 4-4 and O are the actual robot joint angles measured from
optical encoders.

The scheme relies on the inverse dynamics function to cancel the rigid robot and
coupling effects and assumes the inertia effects are the most significant coupling effects.
As discussed in sections 4.3 and 7.3.1, the inertia effects are dominant in the single
degree of freedom case. However, nonlinear effects can become more significant with
multiple links actuating harmonically. Thus, the controller also relies on the gain limits
established in section 5.3.1 to limit the joint amplitudes such that the inertia effects

adequately capture the significant interaction effects.
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Block Diagram of Multi-Degree of Freedom Vibration Damping
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7.4.1 Disturbance Rejection

First, the vibration controller was tested in a configuration of (0°, 45°,-45°) and an
excitation was applied to the macromanipulator. The first case considered was with the
vibration controller turned on during the free vibration, and the resulting base vibration
and joint motion recorded. The second case was with the vibration controller on and a
disturbance is applied to the macromanipulator. A summary of the test cases and
calculated damping ratios is shown in Table 7-8. In most cases, two tests were performed
for each case and the damping ratios were averaged. In nearly all cases, as expected,
multiple modes were excited, but the lower frequency modes were those responsible for
the largest amplitude of vibration. In all of the test cases vibration energy is removed
from the overall system. The damping controller performance works best for damping
the fundamental mode at 1.2 Hz, which is the transverse mode of the first link in the y
direction. The controller gains for x direction Vibration were selected to be low
compared to the y gains in order to help avoid excitation of the higher frequency modes,
notably modes at 4.2 and 9 Hz. A representative example of the recorded base position

and joint motion can be seen in Figures 7-28 and 7-29.

198




Table 7-8

Summary of Active Damping Controller Disturbance Rejection

Disturbance Mode Detected ¢ %
Applied (Hz) Primarily in Improvement
Directions
X 1 X .0239 28.5
X 1.2 V,Z .0392 485.1
X 2 X,Y,Z 0231 | -
X 4.2 X,Z .0164 88.5
y 1 X,Z .0499 168.3
y 1.2 V,Z .0332 395.5
y 4.2 X,Z 0111 27.6
y 7 V,Z .0132 157.3
y 9 V,Z .0081 188.3
zZ 1 X 0311 67.2
z 1.2 V,Z .0419 525.3
zZ 4 X,Z 0163 87.4
zZ 7 Y,Z .0166 224.6
Z 9 V,Z .0082 191.8
General 1 X .0256 37.6
General 1.2 Y,Z .0359 435.8
General 4.2 X,Z .0120 379
General 7 Y,Z .0197 284.0
General 9 Y,Z .0086 206.0
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Joint Response Due to an Applied Disturbance
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7.4.2 Combined Movement and Vibration Control

The second set of experiments was intended to verify the use of the performance
index to predict regions of good inertial damping performance. The robot was
commanded to move from a configuration of (-27°,0°,83°,0°,30°,90°) to
(45°,5°,60°,0°,90°,90°), which is one of the legs presented in section 6.3.4 for
simulated point-to-point motion in a configuration predicted better for inertial
damping performance. The resulting base vibration and commanded joint movement
may be seen in Figures 7-30 and 7-31. Note the very low amplitude of vibration in
the x and z directions compared with vibration in the y direction. The base vibration
with and without the vibration controller for the robot moving from (-27°,83°,-
100°,0°,90°,90°) to (45°,65°,-60°,0°,90°,90°), which is the alternate inverse
kinematics path, may be seen in Figure 7-32. As expected, lower amplitude of
vibration results in the regions of low coupling, but the vibration controller is much
less effective. The tradeoff in the better configuration is the impact on joint
positioning, since the controller requires small joint movements about the desired end
point position. These occurs primarily at the end of the path, although there are a few
correctional movements made just before the end of the trajectory which helps reduce

the level of vibration.
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7.5 Implementation Issues

Many implementation issues arose with the experimental testing of the control

scheme in multiple degrees of freedom.

These will be discussed along with

recommendations for improving the testbed for future work.

7.5.1 Acceleration Data

The available vibration measurements were PCB piezoelectric accelerometers. The

fundamental frequencies of the testbed were very low, approximately .98 and 1.2 Hz. For

the model 303A accelerometers, used for x and y vibration measurements, the +/- 5%

frequency range of these accelerometers is from 1 — 10000 Hz and for the model 308B
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accelerometers is from 1 — 3000 Hz [57]. The modes of vibration on the new testbed
were very low and the accelerometers were operating toward the lower limit of their
useful range. This was further complicated by the beating phenomenon between the first
two fundamental modes discussed in Section 7.2.2. In addition, ideally, the measured
accelerations would need to be integrated as noted in section 5.4.5. As noted in several
sources [66,84], integration of piezoelectric acceleration time histories generally results
in calculated displacements that are dominated by large, low frequency drifts unless low
frequency spectral content is filtered out. In the case of the experimental hardware, it is
extremely important to get the fundamental (low) frequency modes of vibration and any
filtering would need to be performed real-time for use in the control scheme. The use of
a finite impulse response filter could be designed to avoid introduction of phasing, but
not implementable real-time. The use of an infinite impulse response or analog filter
could be used but higher order filters would be needed to provide a sharp enough cutoff
to avoid attenuation of the low frequency modes.

For lab implementation, a second order high pass digital Butterworth filter with a
cutoff frequency of .15 was used. This was necessary due to offsets in the accelerometer
data and it added little phase shift into the fundamental modes. For this work, it was
considered a reasonable approximation to use the measured acceleration data and it
provided reésonable performance. For future work, it is recommended that direct

position measurements be used that allow for very low frequency vibration measurement.
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7.5.2 Hydraulics Effects

As discussed in Sections 6.4 and 7.2.1, it was assumed, and experimentally
verified by open loop testing, the hydraulic actuators followed a model of the form of
Equation 7-2. Figure 7-33 shows the commanded output from the PC (unitless) and the
resulting joint response at a low frequency command. The response is very nearly like an
integrator, as expected. The same comparison for a higher frequency commanded output
is shown in Figure 7-34, which shows much poorer tracking at higher frequencies. The
second order servovalve models and parameters in Table 7-1 do not predict this behavior.
Second order servovalve models were noted by the vendor as being a good
approximation at frequencies lower than 50 Hz [75,76]. However, the observed behavior
indicates that a higher order system model is required for accuracy. Merritt [50]
recommends a third or fourth order system model, depending on the accuracy of the
model required. For future work it is recommended that higher order servovalve models
be developed from system testing. Better high frequency response could then be obtained

by developing phase compensators from the known models.

205




Tau 2 (unitless)/Theta 2 (rads)

Tau (unitless)/Theta 2 (rad)

Low Frequency Tracking of Joint 2
200 T T T T T T T

----- Tau 2
—— Theta 2 (magnified)

150

100

50

-100

-150
_200 L 1 1 1 L 1 L
4 4.5 5 55 6 6.5 7 7.5
Time (s)
Figure 7-33
Low Frequency Tracking of Joint 2
100 High Frequency Tracking of Joint 2
----- Tau 2
80 —— Theta 2 (magnified) |-

-100 L | 1 Il L
4.2 4.3 4.4 4.5 4.6 4.7
Time (s)
Figure 7-34

High Frequency Tracking of Joint 2

206




7.5.3 Joint Torque Effects

The vibration controller gives reasonably good performance in approximately half
of the workspace. Whenever the robot is facing away from the macromanipulator, the
controller does not function properly to remove energy from the system (Figure 7-35).
This is due to a combination of two reasons. First, joint 1 provides a direct, amplified
input into the torsional mode of the first link in these configurations. As discussed in
Section 6.3.2, when the interaction torques are not considered it makes little difference in
the controller performance in some workspace configurations. However, in the
configuration shown in Figure 7-35, the interaction torques have a much greater effect on
the performance of the vibration controller and should be included in the controller. This
effect is magnified even more on the testbed due to the additonal leverage provided by
the second flexible link. Given the mode shape equation in 3-9, the torsional mode shape
is largest at the tip of the beam, hence application of the torque here has the greatest
effect in exciting it. This direct excitation combined with poor high frequency tracking,
as discussed in Sections 6.4 and 7.5.2, rendered these configurations unusable for active
damping on the current testbed.

As an example, consider the top view of the macro/micromanipulator shown at the
bottom of Figure 7-35. The figure on the left shows a configuration of poor inertial
damping performance, while the figure on the right shows a configuration in which the
controller performed better. Recall the generalized forces due to the micromanipulator
are given by equation 3-17. In the case on the left, the interaction forces remove

vibrational energy from the system, but the torques may add energy. In the case on the
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right, both the interaction forces and torques remove vibrational energy from the system.

This further reiterates the need for including interaction torques in the control scheme.

/______ Represents 15’

flexible link

5’ flexible link

]
Rigid Robot
Link 1

TF
6 0
Figure 7-35

Testbed Configuration with Poor Inertial Damping Performance
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CHAPTER V11

CONCLUSIONS

7.1 Conclusions

This dissertation has developed, simulated, and demonstrated a position and
enhanced vibration control scheme for a macro/micromanipulator. The analogous case of
a rigid manipulator attached to a flexible but unactuated base was used to study the
directly controllable inertial interaction forces and torques acting between the robot and
its base. The “inertial singularities” in the joint workspace were investigated in detail,
namely the regions where the robot loses its ability to create interactions in one or more
degrees of freedom. A performance index was developed to predict the ability of the
robot to generate interactions and can be used to ensure the robot operates in joint space
configurations favorable for inertial damping. It was shown that when this is used along
with the appropriate choice of vibration control feedback gains, the inertia effects, or
those directly due to accelerating the links of the robot, have the greatest influence on the
interactions. By commanding the link accelerations proportional to the base vibration,
energy will be removed from the system. The vibration control signal is added to the
position control signal. Simulated and measured interaction forces and torques generated

at the base of a rigid robot were compared to verify conclusions drawn about the
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controllable interactions. In addition, simulation and experimental results demonstrated
the combined position control and vibration damping ability of the scheme.

The true contributions began in Chapter 4 with a detailed discussion of the
controllable interaction force and torques. A performance measure was introduced which
predicts the effectiveness of the rigid robot in creating these interactions. The rigid
inertia effects (B;, By) were studied in more detail and the “inertial singularities”
investigated. It was pointed out that these singularities are, in general, different from the
kinematic singularities. However, since the variation in performance is governed by the
joint space configuration of the rigid robot, the performance measure could be used to
quickly assess predicted inertial damping performance at the multiple inverse kinematic
joint space solutions and used to operate the rigid robot in configurations better suited for
inertial damping.

The inertia effects dominate the interactions in most non-singular configurations, but
in certain cases, the nonlinear rigid effects may also become significant and these cases
are discussed. The control scheme was discussed in Chapter 5. The vibration controller
requires an inverse dynamics function to cancel the most important coupled interaction
effects. Guidelines on choosing controller gains to ensure the inertia effects are the
dominant terms were presented.

Simulation results were presented in Chapter 6 demonstrating vibration damping of a
three degree of freedom anthropomorphic robot mounted on a flexible base. Simulations
demonstrating disturbance rejection as well as the use of the performance index in

predicting better joint space configurations for vibration damping during commanded
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motion were included. Chapter 7 discussed the experimental testbed and presented
results from two areas of testing. The first was verification of the interaction force and
torque effects and work discussed in Chapter 4. The second was implementation of the
vibration control scheme on a multi-degree of freedom experimental testbed. Although
there were problems that arose with damping in certain workspace configurations, in
most of the workspace the vibration controller performed well to remove energy from the
system. This included both disturbance rejection as well as vibration control during

commanded movements. Finally, implementation issues were discussed.

7.2 Contributions

Contributions of this work are:

1. Extension of the macro/micromanipulator control problem to multiple degrees of
freedom by considering the analogous problem of a rigid manipulator mounted on a
flexible base.

2. Detailed investigation of inertial singularities and lvariation in performance
throughout the workspace and development of a performance measure that predicts
the ability of the micromanipulator to effectively damp base vibration using an
inertial damping scheme.

3. Development of a control scheme that provides active base vibration damping in
parallel with rigid robot position control. This includes the use of the performance
index to improve the vibration damping capability of the micromanipulator given a

desired end point position and establishing appropriate limits on control gains.
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4. Verification of the above control scheme via simulation

5. Verification of the above control scheme via experimental work. This included
verification of the accuracy of the interaction force and torque predictions and
demonstration of the effectiveness of the control scheme on a realistic multi-degree of
freedom testbed.

This work primarily builds on that performed previously by Lee [11,33], Cannon
[15,16], Loper [12,42], and Lew [34-40]. This extends their work to include some
concepts introduced in space robotics research by Papadopoulos, Evangelos, and
Dubowsky [56] and Torres and Dubowsky [77-79]. In particular, this is the first work to
develop the complete interaction forces and torque effects for a macro/micromanipulator
and investigate the variation in performance throughout the workspace. In addition, this
is the first work to introduce “inertial singularities,” determine when and why they occur,
and propose a solution to work around them. This is also the first work to consider
multiple modes of vibration and propose control gain limits to ensure overall energy
removal from the system. Finally, this is the first work demonstrating multiple-degrees
of freedom of vibration damping on an experimental testbed, involving multiple joints
actuating cooperatively for vibration damping. Although the scheme could not be shown
to be effective in all configurations, mainly due to implementation issues and simplifying
assumptions made to scale the inverse dynamics function to an implementable level, this

work demonstrates a clear contribution to the field.
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7.3 Recommendations for Future Research

There are many areas of research that could be further investigated including
implementation issues that were discussed in section 7.5. As noted in Chapters 6 and 7 a
more reasonable method of modeling the interaction torque effects is needed. The
algorithm described in Section 4.4 allowed for a much easier derivation of the interaction
forces than the symbolic method described in Section 3.3, but a similar method was not
found for the interaction torques. Mainly, the length of the interaction torque equations,
detailed in Section A.1.2 for the three degree of freedom case, made simulating and
studying them in detail cumbersome and unimplementable in practice. More work needs
to be done in this area, either to discover a much more efficient method of deriving
expressions for the interaction torques or eliminating effects that are less important.

The use of input shaping in combination with an inertial damping control scheme is
an area worthy of future research. Input shaping techniques are effective at reducing the
amplitude of vibration induced by commanded movements but typically do not add
damping to the system. This becomes particularly noticeable in an example such as that
shown in section 6.3.4 and 7.4.2, where damping was compared for commanded rigid
robot movement with and without inertial damping. If implemented with input shaping,
vibration created by motion of the robot itself would be reduced and, assuming the robot
is operating in a region of predicted good performance, the controller could still provide
disturbance rejection. Hence, the combination of the two schemes should provide the
best performance for both commanded movement vibration control as well as disturbance

rejection.
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Another area worthy of future research is the effect of implementation of the control
scheme on a digital controller. Simulations as well as experimental work were performed
using continuous system theory. Implementation involved real-time calculation of the
control signals during each control loop, based on sampling the appropriate control
signals (positions and accelerations). However, with increased computation time, which
will occur especially if interaction torques are included, sample and hold effects as well
as finite precision effects may become more of an issue.

Another area that should be considered is implementation of the proposed
controller with a macromanipulator at varying joint angles. This would change the
natural frequencies and damping ratios of the modes of vibration, as well as the
orientation of the applied interaction forces. The proposed controller should theoretically
apply as long as the frequency of vibration is measurable, but other unforeseen problems
could occur.

As discussed in section 6.3.1, vibration control performance is not as efficient in
regions of high nonlinear effects when higher modes exist in the system, which requires
lower control gains. Performance could possibly be improved by canceling those effects
in the vibration control scheme or using some alternate controller form. Another area of
future research should consider the effect of contact on the tip of the micromanipulator.
The work performed thus far assumes no contact on the system, whereas the more
general case would likely involve contact by the micromanipulator. Appropriate
modifications to the controller and/or inverse dynamics function may be necessary in

these cases.
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APPENDIX A

EQUATIONS OF MOTION

For completeness, this appendix includes the symbolic form of the fully coupled
equations of motion for the anthropomorphic robot as well as some of the more important

equations for the other configurations studied in this work. As discussed in chapter four,

some of these effects are more significant than others. The general form of the

interaction forces and torques and notation used is:

g, 66, G2 i 6.9, 6:
Fj =B(0)| 6, [+ Ny (0)| 6,6, |+ Ny (0)| 65 |+ G (0)+ A, | § |+ Noey (0)] 6,6, |+ Ney (0)| 67
4, 6,6, 62 Z 6,6, 6>
6,
+B,,0)| 6, |+ Noy [ 66, 66, 66, 66, 6.6, 6,6, 66, 66, 66,1
g

Ty =B,y (0,0)+ Ny (0,60,) + Nyo (8,67) +G o (0) + Ao (8,8) + Ny (6,6,0) + N 0, 67)
+B,.,(0,0,)+Ng,.,0,60,)

7=B,(0,6)+ N, (0,60)+ N, (0,6))+G,(6)+ A,0,8) + Ne, (6,6,0,)+ N, (0,67)
+B,.(0,6,)+ N, (6,66,) (A1)
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where:

B matrices are rigid body inertia-like matrices (B; is the inertia matrix)

Ng matrices are rigid body coriolis effects

N¢ matrices are rigid body centrifugal effects

G matrices are rigid body gravity effects

A are flexible body inertia matrices (due to base acceleration)

Nrgc are flexible body coriolis effects (due to base rotational velocities)

Ncc are flexible body centrifugal effects (due to base rotational velocities)

Byw are flexible body rotational inertia matrices (due to base rotational accelerations)
Ncwu are cross coupling effects due to both joint velocities and base rotational velocities

This notation will be used for all robot configurations studied in this work. As
discussed in Chapter 3, equations were derived from a Matlab m-file using a Newton
Euler method. Due to their length and complexity, great pain was taken to find forms
that are more useful for the critical rigid and flexible inertia and nonlinear rigid effects.
However, due to the complexity of the equations this was only done for the some of the

equations. The remainder are included in the general (“simple” format) form provided by

Matlab.

A.1 Three Degree of Freedom Anthropomorphic Robot

The anthropomorphic robot configuration used here is similar to that used in
experimental work. The same link parameters and Denavit-Hartenberg parameters were
used as for the actual robot and the parameters are defined Figure 4-1. Notice the
alternate definition of joint angle two. This was chosen because software code was
already written to control the robot using these parameters and it avoided numerous
changes to the software code. The Denavit and Hartenberg parameters are shown in

Table A-1.
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Table A-1

Denavit-Hartenberg Parameters for Anthropomorphic Robot

Link ai (0 K di 91'
0 0 0 do inert
1 0 /2 d 0
2 a 0 0 62
3 a3 0 0 03

Rotation Matrices
[cos(8,) 0 sin(,)
R’ =|sin(8,) 0 -cos(6,)
o0 1 o0
[cos(8,) -sin(d,) O]
R, =|sin(d,) cos(8,) O
o 0 1]
cos(d,) -sin(4,) 0 ]
R} =|sin(8,) cos(d,) O (A-2)

0 0

1

It will be useful to define some constants to help simplify the equations of motion:

A=m,r, + m,a,

B =myr,
D=d,+d,
E=m3r32
F=ma,
G=1,,-1,,
H=I_+1I,,
J==(L,-1,)

- 2 2
K =m,r; + m,a,

L=I,+1.+1,,
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M =my+m +m,+m,

N =mja,r,
O =myry +m(d, + 1)+ (m, +m;)D
P = _lex +Ilzz +IZzz +ISzz

0=1I,. +12W +1,, +13W (A-3)

Postion Vector to CG

¢,(Ac, + Bce,,)
= —]\71— s,(4c, + Bc,;)
O+ 4s, + Bs,,

(A-4)

rCG

A.1.1 Interaction Force Effects

Rigid Inertia Forces

—s,(Ac, + Bc,,)

B, =| c¢(A4c,+Bc,,)

/

|B,|=-4Bs,(4c, + Bc,,)

Rigid Coriolis Forces

25,(A4s, + Bs,;) 2Bs,s,,
Ny, =| —2¢,(4s, +2Bs,;)  —2Bc;s,,
0 0

Rigid Centrifugal Forces
—c,(Ac, + Bcy,)  —c,(Ac, + Be,,)

=s,(dc, + Bey,)  —s,(Ac, + Beyy)
0 —(4s, + Bs,;)

Ny =
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~c,(As, + Bs,;)
—5,(4s, + Bs,;)
0 Ac, + Bce,,

—Bc,s,,
—Bs;sy,
Bc,,
(A-5)

—2Bcc,,
~2Bs,Cy,
—2Bs,,

(A-6)

- Bccy,
— Bs,cy,
—Bs,,

(A-7)



Rigid Gravitational Forces

G,=| 0 (A-8)
Mg

Flexible Body Inertia Forces

M 0 0
4,={0 M 0 (A-9)
0 0 M

Flexible Body Coriolis Forces

Ny (1LD) = 5,(4c, + Bey,)

Npey(1,2) =0+ A4s, + Bs,,

Nyer 1,3)= Nier 2,2)= Npey(3,D)=0

NRCf (2,1)=c¢,(4c, + Bc,;)

Ny (2,3) =0+ 4s, + Bs,,

Nier (3,2) = ¢, (4c, + Bey,)

Ny (3,3) =5,(4c, + Bc,,) (A-10)

Flexible Body Centipetal Forces

NCCf L= NCCf (2,2)= NCCf(3’ 3)=0

N (1,2) =—¢,(Ac, + Be,y)

Neey (1,3) =—¢,(Ac, + Bey,)

Neer(2,1) = =s,(4c, + Bey,)

Neer(2,3) =—s,(Ac, + Bey,)

N (3,1) =—(O+ 4s, + Bs,;)

Neey(3,2) =—(O+ 4s, + Bs,,) (A-11)
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Flexible Body Rotational Inertia Forces

0
0
—2¢,(Ac, + Bey,)
0
2(Ac, + Bc,,)
2s,(As, + Bs,,)
0
2Bc,,
2Bs,s,,

Neyy =

B“f(l, D =B“f(2, 2) =B“f(3,3) =0
BM(I, 2)=0+A4s,+Bs,,

B,/ (1,3)=—5(de, + Bey)

B (2)=~(O+4s, +Bs,,)
B,(23)=c(Ac, +Bcy)

vi(3’1) =s,(Ac, +Bcy,)
B,(3,2)=(4c, +Bey)

Cross Coupling Force Effects

0 2¢,(Ac, + Bc,,)
0 2s,(Ac, + Bc,,)
—2s,(Ac, + Bc,,) 0
—2(Ac, +Bc,;) ~2s,(As, + Bs,;)
0 2¢,(A4s, + Bs,,)
—2¢,(A4s, + Bs,,) 0
—2Bc,, —2Bs,;s,,
0 2Bc,s,,
—2Bc;s,, 0

A.1.2. Interaction Torque Effects

Rigid Inertia Interaction Torques

(A12)

(A-13)

B, (L) = ¢,{-2c,s,;[c;(E +J) + Ba, ]+ (E + J)(s,c, + 5,¢;) + B(a,s, — Dc,,) + (G - K)s,c, — ADc, }
B ,(1,2) =5,{B(2a,¢, + Ds,;,)+ ADs, + (E+ H + K)}
B,o(1,3) = 5,{B(a,c, + Ds,) + E+1,.)

B, (2,1) = 5,{=2¢,8,;[¢;(E + J) + Ba, ]+ (E + J)(s,¢, + 8,¢,) + B(a,s, — Dc,,) + (G- K)s,c, — ADc, }
B.,(2,2)=—c,{B(2a,c, + Ds,;) + ADs, + (E + H + K)}

B,0(2,3) = —,{B(a,¢; + Dsy,) +(E +1,,.)}

B.,(3,1) =2c,c,5[c,(E+J)+ Ba, ) —(E+J)(c; +c2)+(K-G); +E+L

B.,(3,2)=8B,,(3,3)=0
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Rigid Coriolis Interaction Torques

NR_, (L) = {~4c,c,5[c,(E+J)+ Ba, )+ 2(E + J)(c: + )+ 2B(2a,c, + Ds,;)
+2(G-K)c; +2A4Ds, +2K + H-G-J}

NR (1,2) = ¢, {-2c,c5[2¢,(E + J) + Ba, ] + 2(E + J)(c +c2) + 2B(a,c, + Ds,,)
~J+L.}

NR_,(1,3) =-2Bs,{a,s, — Dc,,}

NR_,(2,1) = 5,{~4c,cp5[c;(E +J) + Ba, ]+ 2(E + J)(c +¢c}) + 2B(2a,c, + Ds,,)
+2(G—-K)c; +2A4Ds, +2K + H-G-J}

NR,((2,2) = 5,{=2¢,¢5[2¢,(E+ J) + Ba, 1+ 2(E + J)(c} + c2) +2B(a,c, + Ds,,)
—J+ IBzz}

NR,,(2,3)=2Bc,{a,s, — Dc,,}

NR_,(3,1) = 2{-2c,5,,[c;(E + J) + Ba, ]+ (E + J)(s,¢, + 8,¢;) + Ba,s, + (G- K)s,c, }

NR_((3,2) = 2{~c,5,,[2¢,(E + J) + Ba, ]+ (E + J)(s,¢, + 5,¢,)}

NR_,(3,3)=0 (A-15)

Rigid Centrifugal Interaction Torques

Ne.o(L1) =5,{2¢,5,,[c;(E +J)+ Ba,]—(E + J)(s,c, + 5;¢,) — B(a,s, — Dc,;)
—(G-K)s,c, + ADc,}

N¢.(1,2) = Ds,{Ac, + Bc,, }

Nc.,(1,3) =—Bs,{a,s, — Dc,,}

Newo(2,1) = e{=2¢,5,5[¢;,(E +J) +2Ba, |+ (E + J)(8,¢, +5;¢3) + B(a, s, — Dcy,)
+(G—-K)s,c, — ADc,}

N(.4(2,2) =—Dc{Bcy, + Ac,}

Neo(2,3) = Be{a,s, — Dy}

Newo D) = Nero(3,2) = Ny (3,3) = 0 (A-16)

Rigid Gravitational Interaction Torques

gs,(4c, + Be,,)
G,, =| —gc,(4c, + Bc,,) (A-17)
0
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Flexible Body Inertia Interaction Torques

0 —(O+ As, + Bsy,) s,(Ac, + Bc,,)
A,=| O+ A4s,+ Bs,, 0 —¢,(4c, + Bey,) (A-18)
—5,(4c, + Beyy)  ¢(Ac, + Bey,) 0

Flexible Body Coriolis Interaction Torques

NRC(1,1)=-cos(thl)*(cos(th2)*12yy*sin(th2)-sin(th2)*I2xx*cos(th2)+cos(th2)*I3xx*sin(th2)

- m3*sin(th3)*sin(th2)*rc3*d1+sin(th2)*m2*cos(th2)*rc22+m3*cos(th3)*cos(th2)*rc3*d1
+2*sin(th2)*m3*rc3/2*cos(th3)*2*cos(th2)-sin(th2)*sin(th3)*m3 *rc3*d0
+2*m3*cos(th2)*rc3*cos(th3)*sin(th2)*a2+cos(th2)*cos(th3)*m3*rc3*d0
+2*cos(th3)*m3*rc32*sin(th3)*cos(th2)"2-sin(th2)*13yy*cos(th2)-a2*rc3*sin(th3)*m3
-2*cos(th3)*I3xx*sin(th3)*cos(th2)*2-2*sin(th2)*I3xx*cos(th3)"2*cos(th2)
+2*sin(th2)*I3yy*cos(th2)*cos(th3)"2+m3*cos(th2)*a2*d0+m2*cos(th2)*rc2*d1

- cos(th2)*m3*rc3/2*sin(th2)+cos(th2)*m2*rc2 *d0+sin(th2) *m3 *cos(th2)*a2"2
+m3*cos(th2)*a2*d1+2*sin(th3)*I3yy*cos(th3)*cos(th2)*2-sin(th3)*rc3*2*m3*cos(th3)
-cos(th3)*I3yy*sin(th3)+2*m3*sin(th3)*rc3*a2*cos(th2)"2+sin(th3)*I3xx*cos(th3))

NRC,¢(1,2)= -cos(th1)*sin(th1)*(-m3*rc3/2+I3xx+12yy-I3xx*cos(th3)"2- I3xx*cos(th2)"2
+I3yy*cos(th2)"2+13yy*cos(th3)"2+m3*rc3/2*cos(th2)2+m3 *rc3/2*cos(th3)"2-m2*cos(th2)"2*¥rc2°2
-2*13yy*cos(th3)"2*cos(th2)"2-m3*a2~2*cos(th2)"2-12yy*cos(th2)"2-2*m3*rc3/2*cos(th3)*2*cos(th2)"2
+cos(th2)"2*12xx+2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2+2*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2)
-2*cos(th2)*sin(th3)*I3xx*cos(th3)*sin(th2)+2*I3xx*cos(th3)"2*cos(th2)"2
+2*cos(th2)*sin(th3)*m3*rc3"2*cos(th3)*sin(th2)-2*m3*rc3*cos(th3)*cos(th2)"2*a2+I1xx-13zz-12zz-
11zz)

NRC,¢(1,3)= -2*rc1*m1*d0+3/4*13yy*cos(2*th3+2*th2)+3/4*m3*a2"2*cos(2*th2)-10yy-2*m3*d0*d1
+3/4*m2*rc2/2*cos(2*th2)+3/4*m3 *rc3 2 *cos(2*th3+2*th2)-1/8*12yy*cos(2*th1+2*th2)- 2*m2*d0*d1
+1/4*13xx*cos(2*th1)- 1/8*I3xx*cos(2*th2-2*th1+2*th3)+1/8*I3xx*cos(2*th2+2*th1+2*th3)
-1/4*m3*a2"2*cos(2*th1)-1/8*m3*a2~2*cos(-2*th1+2*th2)- 1/8*m3*a2"2*cos(2*th1+2*th2)
+1/8*12xx*cos(2*th1+2*th2)-1/8*12yy*cos(-2*th1+2*th2)+1/8*12xx*cos(-2*th1+2*th2)
+1/4*12xx*cos(2*th1)-2*m2*rc2*d0*sin(th2)-2*m2*rc2*d1 *sin(th2)-2*m3*a2 *d0*sin(th2)
-2*m3*a2*d1*sin(th2)-1/2*m3*rc3*cos(th3)*a2-3/4*12xx*cos(2*th2)+1/4*[3xx+1/4*¥12yy+1/4*13yy
-m0*rc0"2+11yy-1/2*12zz+1/4*12xx-1/2*132z-1/2*1 1 xx+10zz-m1 *rc1°2-1/4*m3 *rc3/2-1/2*11zz
-m3*d0"2-m1*d0"2-m3*d1/2-1/4*m3*a2/2-1/4*m2*rc2"2-m2*d0"2-m2*d112
-1/4*m3*rc3/2*cos(2*th1)-1/8*I3yy*cos(2*th2-2*th1+2*th3)-1/8*I3yy*cos(2*th2+2*th1+2*th3)
+1/4*13yy*cos(2*th1)-1/4*m2*rc2"2*cos(2*th1)-1/8*m2*rc2"2*cos(-2*th1+2*th2)
-1/8*m2*rc2/2*cos(2*th1+2*th2)-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)
-1/4*m3*rc3*a2*cos(th3+2*th2-2*th1)+3/2*m3*rc3*a2 *cos(2*th2+th3)-2*m3*rc3*d0*sin(th3+th2)
-1/4*m3*rc3*a2*cos(th3-2*th1)-1/4*m3*rc3*a2*cos(th3+2*th1)-2*m3*rc3*d1*sin(th3+th2)
-1/8*m3*rc3/2*cos(2*th2-2*th1+2*th3)-1/8*m3*rc3”2*cos(2*th2+2*th1-+2*th3)
-1/2*13zz*cos(2*th1)+1/2*I1xx*cos(2*th1)-1/2¥12zz*cos(2*th1)-1/2*I1zz*cos(2*th1)

NRC((2,1)= sin(th1)*(m3*cos(th2)*a2*d1-cos(th2)*m3*rc3"2*sin(th2)
+2*cos(th2)*I3yy*cos(th3)"2*sin(th2)+m3*cos(th2)*a2 *d0+sin(th2)*m3*cos(th2)*a2"2
-2*cos(th2)*I3xx*sin(th2)*cos(th3)"2+sin(th2)*m2 *cos(th2)*rc2"2+m2*cos(th2)*rc2*d1
-cos(th3)*m3*rc3/2*sin(th3)+m2*cos(th2)*rc2*d0+2*sin(th3)*I3yy*cos(th3)*cos(th2)"2
-2*cos(th3)*I3xx*sin(th3)*cos(th2)"2- sin(th3)*m3*rc3*a2-+cos(th2)*I3xx*sin(th2)
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+cos(th3)*I3xx*sin(th3)-sin(th3)*I3yy*cos(th3)+cos(th2) *12yy*sin(th2)-sin(th2)*I2xx*cos(th2)
+2*sin(th3)*m3*rc3*cos(th2)*2*a2+2*cos(th3)*m3*rc3/2*sin(th3)*cos(th2)"2
-m3*sin(th3)*sin(th2)*rc3*d0- m3*sin(th3)*sin(th2)*rc3*d1+2*sin(th2)*m3*rc3/2*cos(th3)*2*cos(th2)
+2*sin(th2)*cos(th3)*m3*rc3*cos(th2) *a2+m3 *cos(th3)*cos(th2)*rc3*d1+m3*cos(th3 ) *cos(th2)*rc3*d0
-cos(th2)*I3yy*sin(th2))

NRC(2,2)= -3/4*12yy*cos(2*th2)+1/4*12yy*cos(2*th1)+1/4*13xx*cos(2*th1)
-1/8*12yy*cos(2*th1+2*th2)-1/8*12yy*cos(-2*th1+2*th2)-1/8*m2 *rc2/2*cos(2*th 1+2*th2)
-1/8*m2*rc2"2*cos(-2*th1+2*th2)-1/8*¥m3*a22*cos(2*th1+2*th2)-1/4*m3*a2"2*cos(2*th1)
-1/4*m2*rc2"2*cos(2*th1)-1/8*¥m3*a2~2*cos(-2*th1+2*th2)-1/4*m3*rc3*a2 *cos(th3+2*th1)
-1/4*m3*rc3*a2*cos(th3-2*th1)+1/4*13yy*cos(2*th1)+1/4*12xx*cos(2*th1)+3/4*13xx*cos(2*th3+2*th2)
-1/4*13xx-1/4*12yy-1/4*13yy-1/4*12xx+3/4*12xx*cos(2*th2)+1/2*cos(th3)*m3 *rc3*a2
+1/8*12xx*cos(-2*th1+2*th2)+2*m2*d0*d1+2*rc 1 *m1*d0-11yy+1/2*11zz- 10zz+1/2*T 1 xx+m0*rc02
+H0xx+2*sin(th2)*rc2*m2*d0+2*sin(th2)*m3*d1*a2+2*sin(th2)*rc2*m2*d1+2 *sin(th2)*m3*d0*a2
+1/2*132z-3/4*13yy*cos(2*th3+2*th2)+1/8*12xx*cos(2*th1+2*th2)+1/4*m3*a2/2+m2*d1°2+m1 *1c12
+m3*d12+m1*d0"2+m3*d0"2+m2*d0"2+1/2*12zz+1/4*m2*rc2/2+2*m3*d0*d1-1/2*12zz*cos(2*th1)
+1/2*1xx*cos(2*th1)+1/4*m3*rc3/2-1/4*m3*1c3/2*cos(2*th1)-1/2*I1zz*cos(2*th1)
-3/4*m3*rc3/2*cos(2*th3+2*th2)-3/4*m3*a2"2*cos(2*th2)+1/8*[3xx*cos(2*th2-2*th1+2*th3)
+1/8*I3xx*cos(2*th2+2*th1+2*th3)-1/8*13yy*cos(2*th2-2*th1+2*th3)
-1/8*13yy*cos(2*th2+2*th1+2*th3)-1/2*13zz*cos(2*th1)-3/4*m2*rc2*2*cos(2*th2)
-1/8*m3*rc3/2*cos(2*th2-2*th1+2*th3)-1/8*m3*rc3”2*cos(2*th2+2*th1+2*th3)
-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)-1/4*m3*rc3*a2*cos(th3+2*th2-2*th1)
-3/2*m3*rc3*a2*cos(2*th2+th3)+2*m3*rc3*d1*sin(th3+th2)+2*m3*rc3*d0*sin(th3+th2)

NRC(2,3)= -sin(th1)*cos(th1)*(-I3xx-12yy+m3*rc3/2+11zz-m3*rc342*cos(th3)"2-11 xx+13zz+12zz

- cos(th3)"2*13yy-+cos(th3)"2*I3xx+12yy*cos(th2)"2+I3xx*cos(th2)"2+2*m3*rc3*cos(th3)*cos(th2)"2*a2
-Byy*cos(th2)*2-cos(th2)"2*12xx-2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2
-2*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2)+2*cos(th2)*sin(th3)*I3xx*cos(th3)*sin(th2)
-2*cos(th2)*sin(th3)*m3*rc3/2*cos(th3)*sin(th2)+2*I3yy*cos(th3)*2*cos(th2)"2+m3*cos(th2)"2*a2"2
-m3*rc3"2*cos(th2)"2-2*I3xx*cos(th3)"2*cos(th2)*2+m2*cos(th2)"2*rc2/2
+2*m3*rc3/2*cos(th3)*2*cos(th2)"2)

NRC.o(3,1)= [2zz*cos(2*th1)+1/2*m3*rc3*a2*cos(th3-2*th1)+1/2*m3*rc3*a2*cos(th3+2*th1)
+1/4*m3*1c372*cos(2*th2-2*th1+2*th3)+1/4*m3*rc3/2*cos(2*th2+2*th1+2*th3)
-1/4*I3xx*cos(2*th2-2*th1+2*th3)-1/4*I3xx*cos(2*th2+2*th1+2*th3)
+1/2*m3*1c3*a2*cos(th3+2*th2-2*th1)+1/2*m3*rc3*a2*cos(th3+2*th2+2*th1)
+1/4*12yy*cos(-2*th1+2*th2)+1/4*12yy*cos(2 *th1+2*th2)+11zz*cos(2*th1)
+1/4*m2*rc2°2*cos(-2*th1+2*th2)+1/4*m2*rc2/2*cos(2*th1+2*th2)+1/2*m2*rc2"2*cos(2*th1)
-1/2*12yy*cos(2*th1)+1/2*m3*1c3/2*cos(2*th1)-1/4*¥12xx*cos(-2*th1+2*th2)
-1/4*12xx*cos(2*th1+2*th2)-1/2*12xx*cos(2*th1)-I 1xx*cos(2*th1)
+1/4*m3%a2"2*cos(-2*th1+2*th2)+1/4*m3*a22*cos(2*th1+2*th2)+1/2*m3*a22*cos(2*th1)
-1/2*I3xx*cos(2*th1)+I3zz*cos(2*th1)+10yy-10xx-1/2*13yy*cos(2*th1)
+1/4*13yy*cos(2*th2+2*th1+2*th3)+1/4*[3yy*cos(2*th2-2*th1+2*th3)

NRC(3,2)= - sin(th1)*(2*cos(th3)*m3*rc3/2*sin(th3)*cos(th2)"2+cos(th2) *rc2*m2*d0
+2*sin(th2)*3yy*cos(th3)"2*cos(th2)+cos(th2)*m2 *sin(th2)*rc2"2-2*cos(th2)*I3xx*cos(th3)"2*sin(th2)
+cos(th2)*m3*d1*a2-sin(th3)*m3*rc3*a2+2*sin(th3)*I3yy*cos(th3)*cos(th2)*2
-sin(th2)*sin(th3)*m3*rc3*d1-sin(th2)*sin(th3)*m3*rc3*d0-cos(th2)*12xx*sin(th2)

- sin(th3)*I3yy*cos(th3)+sin(th3)*I3xx*cos(th3)+2*cos(th2)*m3*rc3/2*cos(th3)*2*sin(th2)
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2+2*m3*sin(th3)*cos(th2)"2*rc3*a2+cos(th2)*cos(th3)*m3*rc3
*d0-+cos(th2)*cos(th3)*m3*rc3*d1-cos(th2)*m3*rc3/2*sin(th2)+cos(th2)*m3*d0*a2
-2*cos(th3)*I3xx*sin(th3)*cos(th2)"2-sin(th3)*m3*rc3/2*cos(th3)+cos(th2)*m3 *sin(th2) *a2"2
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-sin(th2)*I3yy*cos(th2)+cos(th2)*I3xx*sin(th2)+sin(th2)*12yy*cos(th2)+cos(th2) *rc2*m2*d1)

NRC,(3,3)= -cos(thl)*(sin(th2)*m3*rc3"2*cos(th2)-cos(th2)*rc2*m2*d0
-2*sin(th3)*I3yy*cos(th3)*cos(th2)"2-+sin(th2)*sin(th3)*m3*rc3*d1-cos(th2)*m3 *d0*a2
-2*sin(th2)*13yy*cos(th3)*2*cos(th2)-cos(th2) *m3*sin(th2)*a2/2- cos(th2)*m3*d1*a2
+2*cos(th2)*I3xx*cos(th3)"2*sin(th2)+cos(th2)*[3yy*sin(th2)+sin(th3)*I3yy*cos(th3)
-sin(th2)*12yy*cos(th2)+cos(th2)*12xx*sin(th2)-cos(th2)*I3xx*sin(th2)
-2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2-cos(th2)*cos(th3)*m3*rc3*d0
-2*cos(th2)*m3*rc3/2*cos(th3)*2*sin(th2)-cos(th2)*cos(th3)*m3*rc3*d1

-cos(th3)*I3xx*sin(th3)+m3 *sin(th3)*rc3*a2-cos(th2)*m2*sin(th2)*rc22-cos(th2) *rc2*m2*d1
-2*cos(th3)*m3*rc3/2*sin(th3)*cos(th2)"2+sin(th2)*sin(th3)*m3*rc3*d0
-2*m3*sin(th3)*cos(th2)"2*rc3*a2+2*cos(th3)*I3xx*sin(th3)*cos(th2)*2+sin(th3)*m3 *rc3"2*cos(th3))

(A-19)
Flexible Body Centrifugal Interaction Torques
NCCy(1,1)=0

NCC,o(1,2)= sin(th1)*(-I3xx*sin(th2)*cos(th2)-cos(th2)*I12yy*sin(th2)- I3xx*sin(th3)*cos(th3)
+I3yy*sin(th3)*cos(th3)+sin(th2)*I2xx*cos(th2)+13yy*sin(th2)*cos(th2)
-2*m3*rc3/2*cos(th3)*2*cos(th2)*sin(th2)-m3*rc3*cos(th3)*cos(th2)*d0-m3 *rc3*cos(th3) *cos(th2)*d1
-2*m3*rc3*cos(th3)*cos(th2)*sin(th2)*a2+m3*rc3*sin(th3)*sin(th2)*d0
-2*m3*rc3*sin(th3)*a2*cos(th2)"2-2*m3*rc3/2*sin(th3)*cos(th3)*cos(th2)*2
+m3*rc3*sin(th3)*sin(th2)*d1-m3*cos(th2)*sin(th2)*a2"2- m3*cos(th2)*d1*a2
+2*I3xx*cos(th3)*2*cos(th2)*sin(th2)-rc2*m2 *cos(th2)*d1-2*13yy*cos(th3)"2 *cos(th2)*sin(th2)
-m3*cos(th2)*d0*a2+m3*rc3/2*sin(th2)*cos(th2)- m2*cos(th2)*sin(th2)*rc2"2
+2*13xx*cos(th3)*cos(th2)*2*sin(th3)-2*I3yy*sin(th3)*cos(th3)*cos(th2)"2
-rc2*m2*cos(th2)*d0-+m3*rc3/2*sin(th3)*cos(th3)+m3*rc3*sin(th3)*a2)

NCC.(1,3)= sin(th1)*(cos(th2)*12yy*sin(th2)-I3yy*sin(th3)*cos(th3)- I3yy*sin(th2)*cos(th2)
+I3xx*sin(th2)*cos(th2)+2*m3*rc3 *cos(th3)*cos(th2)*sin(th2)*a2+2*m3 *rc3 *sin(th3)*a2 *cos(th2)"2
+m3*rc3*cos(th3)*cos(th2)*d0+2*m3*rc32*cos(th3)"2 *cos(th2) *sin(th2)+m3*rc3 *cos(th3)*cos(th2)*d1
+2*m3*rc3/2*sin(th3)*cos(th3)*cos(th2)*2-2*I3xx*cos(th3)*cos(th2)"2*sin(th3)

- m3*rc3*sin(th3)*sin(th2)*d0-m3*rc3*sin(th3)*sin(th2)*d1- sin(th2)*I2xx*cos(th2)
+I3xx*sin(th3)*cos(th3)-m3*rc3*sin(th3)*a2-m3*rc3/2*sin(th3)*cos(th3)- m3*rc3/2*sin(th2)*cos(th2)
+m3*cos(th2)*sin(th2)*a2"2+m3*cos(th2)*d0*a2+m2*cos(th2)*sin(th2)*rc2"2
-2*I3xx*cos(th3)"2*cos(th2)*sin(th2) +2*I13yy*sin(th3)*cos(th3)*cos(th2)"2
+m3*cos(th2)*d1*a2-+rc2*m2*cos(th2)*d0+rc2*m2*cos(th2)*d1+2*13yy*cos(th3)*2*cos(th2)*sin(th2))

NCC.(2,1)= cos(th1)*(-sin(th3)*I3yy*cos(th3)+cos(th3)*I3xx*sin(th3)-sin(th2)*I3yy*cos(th2)

- sin(th2)*12xx*cos(th2)+cos(th2)*12yy*sin(th2)+cos(th2)*I3xx*sin(th2)
+2*sin(th3)*m3*rc3/2*cos(th3)*cos(th2)"2- m3*rc3*sin(th3)*sin(th2)*d0
+2*m3*sin(th3)*rc3*a2*cos(th2)"2+2*sin(th2)*m3*rc3/2*cos(th3)*2*cos(th2)
-m3*sin(th3)*sin(th2)*rc3*d1+2*cos(th3)*I3yy*sin(th3)*cos(th2)"2-2*sin(th2)*I3xx*cos(th3)"2*cos(th2)
+sin(th2)*m2*cos(th2)*rc22+m3*rc3*cos(th3)*cos(th2)*d0+m3*cos(th3)*cos(th2)*rc3*d1
+m2*cos(th2)*rc2*d1+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2+m3*cos(th2)*d0*a2
+2*cos(th2)*I3yy*cos(th3)"2*sin(th2)-cos(th2)*m3 *rc3/2*sin(th2)-2*cos(th3)*I3xx*sin(th3)*cos(th2)"2
-cos(th3)*m3*rc3/2*sin(th3)- m3*sin(th3)*rc3*a2-+sin(th2)*m3*cos(th2)*a2/2
+m3*cos(th2)*a2*d1+rc2*m2*cos(th2)*d0)

NCC(2,2)=0
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NCC,o(2,3)= -cos(th1)*(-sin(th2)*I3yy*cos(th2)+cos(th3)*I3xx*sin(th3)- sin(th2)*I2xx*cos(th2)
+cos(th2)*I3xx*sin(th2)- sin(th3)*I13yy*cos(th3)+2*sin(th2)*m3 *rc3/2*cos(th3)"2*cos(th2)
+2*m3*sin(th3)*rc3*a2*cos(th2)*2- m3*sin(th3)*sin(th2)*rc3*d1+m3*rc3 *cos(th3)*cos(th2)*d0
+2*gin(th3)*m3*rc342*cos(th3)*cos(th2)"2+m3*cos(th3)*cos(th2)*rc3*d1- m3*rc3*sin(th3)*sin(th2)*d0
+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2-cos(th3)*m3*rc32*sin(th3)- cos(th2)*m3*rc3/2*sin(th2)
+re2*m2*cos(th2)*d0+sin(th2)*m3*cos(th2)*a2*2+m3*cos(th2)*a2 *d1+sin(th2)*m2*cos(th2)*rc2"2
-2*sin(th2)*I3xx*cos(th3)"2*cos(th2)+m2*cos(th2)*rc2*d1+m3*cos(th2)*d0*a2
+2*cos(th3)*I3yy*sin(th3)*cos(th2)"2-m3*sin(th3)*rc3*a2+2*cos(th2)*I3yy*cos(th3)"2*sin(th2)
-2*cos(th3)*I3xx*sin(th3)*cos(th2)"2+cos(th2)*12yy*sin(th2))

NCC.o(3,1)= -sin(th1)*cos(th1)*(13zz+12zz+rc2/2*cos(th2)*2*m2+a2"2 *cos(th2)"2 *m3
-2*cos(th2)"2*cos(th3)"2*I3xx-cos(th3)"2*rc3°2*m3- cos(th2)"2*rc3*2*m3
+2*cos(th3)"2*cos(th2)"2*I3yy-I3xx-12yy+rc3/2*m3-cos(th3)"2*13yy- cos(th2)"2*13yy
+2*cos(th2)"2*cos(th3)"2*rc3/2*m3+cos(th2)*2*I3xx+2*cos(th2)*cos(th3)*I3xx *sin(th3)*sin(th2)
-2*cos(th2)*cos(th3)*rc3/2*m3*sin(th3)*sin(th2)+2*a2*cos(th2)"2*rc3*m3*cos(th3)
-2*a2*cos(th2)*rc3*m3*sin(th3)*sin(th2)-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2)
-cos(th2)"2*12xx+cos(th2)"2*12yy+cos(th3) 2 *[3xx-11xx+11zz)

NCC.(3,2)= sin(th1)*cos(thl)*(I13zz+12zz-13xx-12yy+rc3/2*m3-11xx+11zz- cos(th2)"2*12xx
+cos(th2)*2*12yy+cos(th2)"2*I3xx- cos(th2)*2*13yy+cos(th3)"2*I3xx
+2*a2*cos(th2)"2*rc3*m3*cos(th3)-2*cos(th2)"2*cos(th3)"2*I3xx+2*cos(th2)"2*cos(th3)*2 *rc3/2*m3
- cos(th3)"2*rc372*m3+a2/2*cos(th2)*2*m3+2*cos(th3)*2*cos(th2) 2 *13yy+rc2*2*cos(th2)"2*m2
+2*cos(th2)*cos(th3)*[3xx*sin(th3)*sin(th2)-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2)
-2*cos(th2)*cos(th3)*rc32*m3*sin(th3)*sin(th2)-cos(th3)"2*13yy
-2*a2*cos(th2)*rc3*m3*sin(th3)*sin(th2)-cos(th2)*2*rc3°2*m3)

NCCyo(3,3)=0 (A-20)

Flexible Body Rotational Inertia Interaction Torques

B.o(1,1)= 2*rc2*m2*sin(th2)*d1+2*m3*rc3*cos(th3)*a2- m3*rc3/2*cos(th1)"2
+I3yy*cos(th3)"2*cos(th1)"2-I3xx*cos(th1)"2*cos(th2)"2-2*I3yy*cos(th2)"2*cos(th1)"2*cos(th3)"2
-12zz*cos(th1)"2+m3*d0"2+13xx*cos(th1)"2+2*I3xx*cos(th3)"*2*cos(th2)"2 *cos(th1)*2
-I1zz*cos(th1)"2+11zz+2*rc2*m2 *sin(th2)*d0-+m3*rc32+I 1 xx*cos(th1)*2+2*m3*sin(th2)*d0*a2

- I2yy*cos(th1)*2*cos(th2)"2+13yy*cos(th2)"2*cos(th1)"2+2*m3 *sin(th2)*d 1*a2
+2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*cos(th1)"2*a2-
2*cos(th2)*I3xx*cos(th3)*sin(th3)*sin(th2)*cos(th1)"2-2*m3*rc3*cos(th3)*a2*cos(th1)"2*cos(th2)"2
+2*cos(th2)*sin(th3)*m3 *rc3/2*cos(th3)*sin(th2)*cos(th1)"2
+2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2)*cos(th1)"2+2*m3*rc3*cos(th3)*sin(th2)*d0
+2*m3*re3*sin(th3)*cos(th2)*d0- I3xx*cos(th1)*2*cos(th3)"2+12xx*cos(th2)*2*cos(th1)"2
+2*rc1*m1*d0+2*m3*d0*d1+2*m2*d0*d1-m3*cos(th1)*2*a2/2*cos(th2)"2+m3*a2"2
-2*m3*rc3/2*cos(th2)"2*cos(th1)"2*cos(th3)"2+2*m3 *rc3*cos(th3)*sin(th2)*d1
+2*m3*rc3*sin(th3)*cos(th2) *d1+12zz+13zz+12yy*cos(th1)*2+m3*d1°2+m1*d0"2
-13zz*cos(th1)"2+m3 *rc3/2*cos(th2)"2 *cos(th1)"2+10xx+m0*rc0"2+m2 *rc2°2+m2*d02+m1*rc112
+m2*d112-m2*rc2/2*cos(th1)*2*cos(th2)*2+m3*rc3*2*cos(th3)*2*cos(th1)"2

Byo(1,2)= -cos(th1)*sin(th1)*(m3*rc3/2-I3xx-12yy-m3*rc3/2*cos(th2)*2+m3*a2 2 *cos(th2)"2

-2*I3xx*cos(th3)"2*cos(th2)"2+2*I3yy*cos(th3)"2*cos(th2)"2
-2*cos(th2)*sin(th3)*m3*rc3/2*cos(th3)*sin(th2)+2*cos(th2)*I3xx*cos(th3)*sin(th3)*sin(th2)
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+2*m3*rc3*cos(th3)*a2*cos(th2)"2-2*cos(th2)*sin(th3)*13yy*cos(th3)*sin(th2)
-cos(th3)"2*rc3/2*m3+m2*rc2/2*cos(th2)"2-2*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2+cos(th3) 2 *I13xx
-cos(th3)"2*I3yy-I3yy*cos(th2)"2+I3xx*cos(th2)"2-+12yy*cos(th2)*2
-12xx*cos(th2)"2+2*m3*rc3/2*cos(th2)*2*cos(th3)"2+112z-11xx+12zz+13zz)

Byo(1,3)=- cos(th1)*(m3*cos(th3)*cos(th2)*rc3*d0+sin(th2) *m3 *cos(th2)*a22
+sin(th2)*m2*cos(th2)*rc2/2+m2*cos(th2)*rc2*d1-cos(th2)*12xx*sin(th2)
+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2-m3*sin(th3)*sin(th2)*rc3*d1-cos(th2)*m3*rc3/2*sin(th2)
-cos(th3)*I3yy*sin(th3)-a2*rc3*sin(th3)*m3- sin(th3)*rc32*m3*cos(th3)+m2*cos(th2)*rc2*d0
+m3*cos(th2)*a2*d1+sin(th2)*I12yy*cos(th2)+m3*cos(th2)*a2*d0-2*cos(th2) *I3xx*cos(th3)2*sin(th2)
+sin(th3)*cos(th3)*I3xx+sin(th2)*I3xx*cos(th2)+2*sin(th3)*m3*rc3/2*cos(th3)*cos(th2)"2
-2*I3xx*cos(th3)*sin(th3)*cos(th2)"2+2*sin(th2)*I3yy*cos(th3)*2*cos(th2)
+2*sin(th3)*I3yy*cos(th3)*cos(th2)"2+m3*cos(th3)*cos(th2) *rc3*d1- m3*sin(th3)*sin(th2)*rc3*d0
+2*sin(th3)*m3*rc3*cos(th2)*2*a2+2*sin(th2)*m3*rc3/2*cos(th3)"2*cos(th2)-cos(th2) *13yy*sin(th2))

Byo(2,1)= -sin(th1)*cos(th1)*(m3*rc32-13xx-12yy-2*cos(th2)*sin(th3)*m3*rc3*sin(th2) *a2
-2*cos(th2)*sin(th3)*m3*rc3/2*cos(th3)*sin(th2)+2*m3*rc3*cos(th3)*a2*cos(th2)~2
-2*cos(th2)*sin(th3)*I3yy*cos(th3)*sin(th2)+2*cos(th2)*I3xx*cos(th3)*sin(th3)*sin(th2)
+2*m3*rc3/2*cos(th2)"2*cos(th3)"2+12yy*cos(th2)*2-12xx*cos(th2)"2+13xx*cos(th2)"2
-IByy*cos(th2)"2+cos(th3)"2*I3xx-cos(th3)"2*[3yy+2*I3yy*cos(th3)*2*cos(th2)"2+m3*a2"2*cos(th2)"2
-m3*rc372*cos(th2)"2-cos(th3)"2*rc3/2*m3+m2*rc2/2*cos(th2)"2-2*13xx*cos(th3)*2*cos(th2)*2
-I1xx+I1zz+12zz+1322) ‘

Byo(2,2)= Ya*12xx*cos(2*th2)- Va*12yy*cos(2*th2)+1/4*13xx+1/4*12yy+1/4*13yy+1/4*12xx
+1/4*I3xx*cos(2*th3+2*th2)-1/4*I3yy*cos(2*th3+2*th2)+2*m3*rc3*d1 *sin(th3+th2)
-1/4*m3*rc3/2*cos(2*th3+2*th2)+3/4*m3*rc3/2+2*rc 1 *m1*d0+m3*d1/2+m2*d142
+3/4*m2*rc2"2+m3*d0"2+m2*d0"2+1/2*1 1xx+1/2*112z+1/2*122z+1/2*13zz+3/2 *cos(th3)*m3*rc3*a2
+2*m3*d0*d1+2*m2*d0*d1+2*sin(th2)*m3*d0*a2+2*sin(th2)*m3*d1*a2+2*sin(th2)*rc2*m2*d1
+m1*d0"2+ml*rc1°2+1/4*m3*rc3*a2*cos(th3+2*th1)+2*m3*rc3*d0*sin(th3+th2)+I0yy
+1/4*m3*rc3*a2*cos(th3+2*th2-2*th1)+1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)
+1/4*m3*rc3*a2*cos(th3-2*th1)+m0*rc0°2+3/4*m3*a2"2-1/4*m3*a2"2*cos(2*th2)
-1/2*m3*rc3*a2*cos(2*th2-+th3)-1/4*m2*rc2"2*cos(2*th2)- %4*I3xx*cos(2*th1)
+1/4*m3*1c372*cos(2*th1)-1/4*13yy*cos(2*th1)-1/4*12yy*cos(2*th1)
+1/8*12yy*cos(-2*th1+2*th2)+1/8*12yy*cos(2*th1+2*th2)-1/4*12xx*cos(2*th1)+2*sin(th2)*rc2*m2*d0
-1/8*12xx*cos(-2*th1+2*th2)- 1/8*12xx*cos(2*th1+2*th2)+1/4*m2*rc22*cos(2*th1)
+1/8*m2*rc2/2*cos(-2*th1+2*th2)+1/8*m2*rc2"2*cos(2*th1+2*th2) +1/4*m3*a2/2*cos(2*th1)
+1/8*m3*a2"2*cos(-2*th1+2*th2)+1/8*m3*a2"2*cos(2*th1+2*th2)
+1/8*m3*rc3/2*cos(2*th2-2*th1+2*th3)+1/8*m3*rc3/2*cos(2*th2+2 *th1+2*th3)
+1/8*3yy*cos(2*th2-2*th1+2*th3)+1/8*I3yy*cos(2*th2+2*th1+2*th3)
-1/8*I3xx*cos(2*th2-2*th1+2*th3)-1/8*I3xx*cos(2*th2+2*th1+2*th3)- %4*I1xx*cos(2*th1)
+1/2*13zz*cos(2*th1)+1/2*11zz*cos(2*th1)+1/2*12zz*cos(2*th1)

Byo(2,3)= sin(th1)*(cos(th2)*I3yy*sin(th2)-I3xx*sin(th3)*cos(th3)-sin(th2)*I3xx*cos(th2)
-sin(th2)*12yy*cos(th2)+2*cos(th2)*I3xx*cos(th3)*2*sin(th2)-m3*cos(th2)*a2*d1
-m3*cos(th3)*cos(th2)*rc3*d0+m3*sin(th3)*rc3*a2-sin(th2)*m3*cos(th2)*a2"2
-2*sin(th3)*m3*rc3/2*cos(th3)*cos(th2)"2+cos(th3)*I3yy*sin(th3)-m3*cos(th2)*a2*d0
-2*sin(th2)*m3*rc3/2*cos(th3)"2*cos(th2)-2*sin(th2)*cos(th3)*m3*rc3 *cos(th2)*a2
-2*sin(th2)*I3yy*cos(th3)*2*cos(th2)-m3*cos(th3)*cos(th2)*rc3*d1-m2*cos(th2)*rc2*d 1
-m2*cos(th2)*rc2*d0+2*I3xx*cos(th3)*sin(th3)*cos(th2)"2-2*sin(th3)*I3yy*cos(th3)*cos(th2)"2
+m3*sin(th3)*sin(th2)*rc3*d0+cos(th3)*m3*rc3/2*sin(th3)+m3*sin(th3)*sin(th2)*rc3*d1
+eos(th2)*12xx*sin(th2)-2*sin(th3)*m3*rc3*cos(th2)*2*a2+cos(th2)*m3*rc3/2*sin(th2)
-sin(th2)*m2*cos(th2)*rc2/2)
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Byo(3,1)= -cos(th1)*(cos(th2)*rc2*m2 *d0+cos(th2)*m3*d0*a2-sin(th3)*m3 *rc3/2 *cos(th3)
-sin(th3)*m3*rc3*a2+cos(th2)*cos(th3)*m3*rc3*d1-sin(th2)*sin(th3)*m3 *rc3*d0

- sin(th2)*sin(th3)*m3*rc3*d1+2*cos(th2)*cos(th3)*m3 *rc3 *sin(th2)*a2
+cos(th2)*cos(th3)*m3*rc3*d0+2*cos(th2) *I3yy*cos(th3)"2*sin(th2)+cos(th2)*rc2*m2*d1
+2*m3*sin(th3)*cos(th2)"2*rc3*a2+2*cos(th2)*m3*rc3/2*cos(th3 )2 *sin(th2)
+2*cos(th3)*m3*rc3/2*sin(th3)*cos(th2)"2+2*cos(th3)*I3yy*sin(th3)*cos(th2)"2
-2*sin(th2)*I3xx*cos(th3)"2*cos(th2)+cos(th2)*m3*d1*a2-2*I3xx*sin(th3)*cos(th3)*cos(th2)"2
-sin(th2)*m3*rc32*cos(th2)+cos(th2)*m2*sin(th2)*rc22+cos(th2)*m3*sin(th2) *a2~2
-sin(th2)*I3yy*cos(th2)+13xx*cos(th3)*sin(th3)- sin(th3)*I3yy*cos(th3)+cos(th2)*I3xx*sin(th2)
+cos(th2)*I12yy*sin(th2)-sin(th2)*I12xx*cos(th2))

B,o(3,2)= -sin(th1)*(I3xx*sin(th3)*cos(th3) —cos(th2)*I2xx*sin(th2)+sin(th2)*I3xx*cos(th2)
+sin(th2)*12yy*cos(th2)-cos(th2)*I3yy*sin(th2)-cos(th3)*I3yy*sin(th3)-m3*sin(th3 ) *sin(th2)*rc3*d1
-m3*sin(th3)*sin(th2)*rc3*d0+2*sin(th3)*m3*rc3*cos(th2)"2*a2- cos(th3)*m3*rc32*sin(th3)
+2*sin(th3)*I3yy*cos(th3)*cos(th2)"2+2*sin(th3)*m3*rc32*cos(th3)*cos(th2)"2+m2*cos(th2)*rc2*d1
+m2*cos(th2)*rc2*d0+m3*cos(th3)*cos(th2) *rc3*d0+m3*cos(th2)*a2*d0+m3*cos(th2)*a2*d1
-m3*sin(th3)*rc3*a2-2*cos(th2)*I3xx*cos(th3)"2*sin(th2)+sin(th2)*m3*cos(th2)*a2~2
+sin(th2)*m2*cos(th2)*rc22+2*sin(th2)*cos(th3)*m3*rc3*cos(th2)*a2- cos(th2)*m3*rc3/2*sin(th2)
+m3*cos(th3)*cos(th2)*rc3*d1+2*sin(th2)*m3*rc3"2*cos(th3)"2*cos(th2)+2*sin(th2)*I3yy*cos(th3)"2*c
0s(th2)-2*I3xx*cos(th3)*sin(th3)*cos(th2)"2)

B.o(3,3)= I1yy+10zz+1/2*m3 *rc32-1/2*I3xx*cos(2*th3+2*th2)+1/2*13xx+1/2*12yy
+1/2¥3yy+1/2*¥12xx+cos(th3)*m3*rc3*a2+1/2*12yy*cos(2*th2)+1/2*m3*a2"2+1/2*m3*a2"2 *cos(2*th2)
+1/2*Byy*cos(2*th3+2*th2)+1/2*m2 *rc2/2-
1/2*12xx*cos(2*th2)+m3*rc3*a2*cos(2*th2+th3)+1/2*m2*rc2/2*cos(2*th2)+1/2*m3*rc3”2*cos(2*th3+2
*th2) (A-21)

Cross Coupling Interaction Torque Effects

NCM,o(1,1)= 2*sin(th1)*cos(th1)*(I3zz+]12zz+cos(th2)*2*12yy+cos(th3) 2 *I3xx-cos(th2) 2 *¥12xx-I3xx
-I2yy+cos(th2)"2*I3xx-cos(th2)*2 *I3yy+rc3/2*m3+2*cos(th2)*2 *cos(th3)"2*rc32*m3
-2*cos(th2)*sin(th3)*[3yy*cos(th3)*sin(th2)+2*cos(th3)"2*cos(th2)"2*13yy
-2*cos(th2)"2*cos(th3)"2*I3xx+a2"2*cos(th2)"2*m3+rc2"2*cos(th2)"2*m2-cos(th2)"2*rc3/2*m3
-cos(th3)"2*I3yy+2*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2)- 2*a2*cos(th2)*rc3*m3*sin(th3)*sin(th2)
+2*a2*cos(th2)*2*rc3*m3*cos(th3)-2*cos(th2)*cos(th3)*rc3/2*m3*sin(th3)*sin(th2)
-cos(th3)"2*rc3/2*m3-I1xx+11zz)

NCM,(1,2)= -1/2*I3xx*cos(2*th3+2*th2)-12zz*cos(2 *th1 )+ 1xx*cos(2*th1)
+1/4*13xx*cos(2*th2-2*th1+2*th3)+1/4*I3xx*cos(2*th2+2*th1+2*th3)-1/2*a2*rc3*m3*cos(th3-2*th1)
-1/2*a2*rc3*m3*cos(th3+2*th1)-1/4*rc2"2*m2*cos(-2*th1+2*th2)-1/4*rc2"2*m2*cos(2*th1+2*th2)
-1/2*rc272*m2*cos(2*th1)+1/2*13yy*cos(2*th3+2*th2)-1/4*a22*m3*cos(-2*th1+2*th2)
-1/2*a2"2*m3*cos(2*th1)+1/2*12yy*cos(2*th1)+1/2*¥13xx+1/2*¥12yy+1/2*13yy+1/2*¥12xx+1/2*a2"2*m3
+1/2*%a2"°2*m3*cos(2*th2)+a2*rc3*m3*cos(th3)+1/2*rc3/2*m3+1/2*rc2/2*m2
+1/2%rc2"2*m2*cos(2*th2)-1/4*a2/2*m3*cos(2 *th 1 +2*th2)+a2*rc3*m3*cos(2*th2+th3)
-1/4*12yy*cos(2*th1+2*th2)-1/4*12yy*cos(-2*th1-+2*th2)+1/4*12xx*cos(2 *th1+2*th2)
+1/4*12xx*cos(-2*th1+2*th2)+1/2*I3xx*cos(2*th1)+1/2*12xx*cos(2*th1)-11zz*cos(2*th1)
-1/4*rc3/2*m3*cos(2*th2-2*th1+2*th3)-1/4*rc3°2*m3 *cos(2*th2+2*th1+2*th3)
-1/2*rc3/2*m3*cos(2*th1)+1yy+1/2*I3yy*cos(2*th1)+1/2*12yy*cos(2*th2)
-1/2*a2*rc3*m3*cos(th3+2*th2-2*th1)-1/2*a2*rc3*m3 *cos(th3+2*th2+2*th1)
-1/4*13yy*cos(2*th2+2*th1+2*th3)-1/4*13yy*cos(2*th2-2*th1+2*th3)-1/2*12xx*cos(2*th2)
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-13zz*cos(2*th1)+1/2*rc3/2*m3*cos(2*th3+2*th2)

NCM,o(1,3)= -1/2*13yy*cos(2*th3+2*th2+th1)+1/2*¥I3yy*cos(2*th3+2*th2-th1)
-1/2*13xx*cos(2*th3+2*th2-th1)+1/2*I3xx*cos(2*th3+2*th2+th1)-m3*rc3*d1*sin(-th1+th3+th2)
+m3*rc3*d1*sin(th1+th3+th2)+1/2*r¢3/2*m3 *cos(2*th3+2*th2-th1)

- 1/2*rc372*m3*cos(2*th3+2*th2+th1) -1/2*m2*rc2"2*cos(2*th2+th1)+1/2*m2*rc22*cos(2*th2-th1)
+m3*rc3*a2*cos(2*th2-+th3-th1)-m3*rc3*a2*cos(2*th2+th3+th1)-1/2*m3*a2~2*cos(2*th2+th1)
+1/2*m3*a2"2*cos(2*th2-th1)+1/2*12xx*cos(2*th2+th1)-1/2*12xx*cos(2*th2-th1)
-1/2*12yy*cos(2*th2+th1)+1/2*12yy*cos(2*th2-th1)-m3*rc3*d0*sin(-th1+th3+th2)
+m3*rc3*d0*sin(th1+th3+th2)+m3*a2*d0*sin(th2+th1)-m3*a2*d0*sin(th2- th1)
+m2*rc2*d1*sin(th2-+th1)-m2*rc2*d1*sin(th2-th1)+m2*rc2*d0*sin(th2+th1)-m2*rc2*d0*sin(th2-th1)
-m3*a2*d1*sin(th2-th1)+m3*a2*d1*sin(th2+th1)

NCM,o(1,4)= 1/2*13yy*sin(2*th3+2*th2)+1/4*13yy*sin(2*th2-2*th1+2*th3)
+1/4*3yy*sin(2*th2+2*th1+2*th3)-1/2*12xx*sin(2*th2)-1/4*12xx *sin(2 *th1+2*th2)
-1/4*12xx*sin(-2*th1+2*th2)+2*m3 *rc3*d0*cos(th3+th2)+1/4*12yy*sin(2 *th1+2*th2)
+2*m3*rc3*d1*cos(th3+th2)+1/4*m2*rc2/2 *sin(2 *th1+2*th2)+1/4*m2*rc2/2*sin(-2*th1+2*th2)
+1/2*m2*rc2°2*sin(2*th2)+m3*rc3*a2*sin(2 *th2+th3)+1/4*12yy*sin(-2 *th1+2*th2)
+1/2*12yy*sin(2*th2)+1/2*m3*rc3*a2 *sin(th3+2*th2-2 *th1)+1/2*m3*rc3*a2*sin(th3+2 *th2+2*th1)
+1/2*m3*rc372*sin(2*th3+2*th2)+1/4*m3*rc3/2*sin(2*th2+2*th1+2*th3)
+1/4*m3*rc3/2*sin(2*th2-2*th1+2*th3)+1/4*m3*a2"2*sin(2*th1+2*th2)
+1/4*m3*a2/2*sin(-2*th1+2*th2)+1/2*m3*a2"2 *sin(2 *th2)-1/4*[3xx*sin(2 *th2-2*th1+2*th3)
-1/4*I3xx*sin(2*th2+2*th1+2*th3)- 1/2*I3xx*sin(2*th3+2*th2)+2*m2 *cos(th2)*rc2*d0
+2*m3*cos(th2)*a2*d0+2*m3*cos(th2)*a2*d1+2*m2*cos(th2)*rc2*d1

NCM,((1,5)=-1/4*12xx*cos(-2*th1+2*th2)+1/4*m2*rc2~2*cos(-2*th1+2*th2)
-1/4*m3*a2"2*cos(2*th1+2*th2)+1/4*m3*a22*cos(-2*th1+2*th2)- 1/4*m2*rc2"2*cos(2*th1+2*th2)
+1/4*12xx*cos(2*th1+2*th2)+1/2*m3 *rc3*a2*cos(th3+2*th2-2*thl)

- 1/2*m3*rc3*a2*cos(th3+2*th2+2*th1)-1/4*12yy*cos(2*th1+2*th2)+1/4*12yy*cos(-2*th1+2*th2)
-1/4*13yy*cos(2*th2+2*th1+2*th3)+1/4*13yy*cos(2*th2-2 *th1+2*th3)
+1/4*13xx*cos(2*th2+2*th1+2*th3)-1/4*13xx*cos(2*th2-2*th1+2*th3)
-1/4*m3*rc372*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3°2*cos(2*th2-2*th1+2*th3)

NCM,((1,6)= -cos(th1)*(-2*m2*rc2/2-13xx-12yy+13yy+12xx-13z2- 122z+2*m2*rc2"2*cos(th2)"2
+4*[3yy*cos(th3)"2*cos(th2)"2-4*I3xx*cos(th3)"2*cos(th2)"2+2*m3*a2 2 *cos(th2)"2
-2*m3*rc3/2*cos(th2)"2-2*cos(th3)*2*rc3°2*m3-4*cos(th2)*sin(th3)*m3*rc3/2 *cos(th3 ) *sin(th2)
-4*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2-2*m3*cos(th3)*sin(th2)*rc3*d1
-4*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2)-2*m3*sin(th3)*cos(th2) *rc3*d1-2*m2*sin(th2) *rc2*d1
-2*m3*sin(th2)*a2*d1-4*a2*rc3*m3*cos(th3)+2*12yy*cos(th2)*2
+4*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2) -2*m2*sin(th2)*rc2*d0-2*m3*sin(th2)*a2*d0
+4*m3*rc32*cos(th2)"2*cos(th3)"2-+4*cos(th3)*m3*rc3*a2*cos(th2)"2
-2*m3*cos(th3)*sin(th2)*rc3*d0-2*m3*sin(th3)*cos(th2)*rc3*d0-2*12xx*cos(th2)"2+2*cos(th3) 2 *I3xx
-2*cos(th3)"2*I3yy+2*I3xx*cos(th2)*2-2*I3yy*cos(th2)"2-2*m3*a2/2)

NCM.(1,7)= 1/2*I3yy*sin(2*th3+2*th2)+1/4*I3yy*sin(2*th2-2*th1+2*th3)
+1/4*13yy*sin(2*th2+2*th1+2*th3)-3/2*sin(th3)*m3*rc3*a2-1/2*13xx*sin(2*th3+2*th2)
+1/4*m3*rc3*a2*sin(th3+2*th1)+1/4*m3*rc3*a2*sin(th3-2*th1)-1/4*I3xx*sin(2*th2+2*th1+2*th3)
-1/4*13xx*sin(2*th2-2*th1+2*th3)+1/2*m3*rc32*sin(2*th3+2*th2)
+1/4*m3*1c3A2*sin(2*th2+2*th1+2*th3)+1/4*m3*rc3~2*sin(2*th2-2*th1+2*th3)
+1/2*m3*rc3*a2*sin(2*th2+th3)+1/4*m3*rc3*a2*sin(th3+2*th2-2*th1)
+1/4*m3*rc3*a2*sin(th3+2*th2+2*th1)+2*m3*rc3*d0*cos(th3+th2) +2*m3*rc3*d 1 *cos(th3+th2)
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NCM,(1,8)= -1/4*m3*rc3*a2*cos(th3+2*th1)+1/4*m3*rc3*a2*cos(th3-2*th1)
-1/4*m3*rc3/2*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3/2 *cos(2 *th2-2*th1+2*th3)
+1/4*13xx*cos(2*th2+2*th1+2*th3)-1/4*I3xx*cos(2*th2-2*th1+2*th3)
-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)+1/4*13yy*cos(2*th2-2*th1+2*th3)
+1/4*m3*rc3*a2*cos(th3+2*th2-2*th1)-1/4*13yy*cos(2*th2+2*th1+2*th3)

NCM,o(1,9)= 1/2*¥13xx*cos(2*th3+2*th2+th1)+1/2*[3xx*cos(2*th3+2*th2-th1)
-1/2*m3*rc3/2*cos(2*th3+2*th2-th1)- 1/2*m3*rc3”2*cos(2*th3+2*th2+th1)
+m3*rc3*d0*sin(th1+th3+th2)+m3*rc3*d0*sin(-th1+th3+th2)-1/2*m3*rc3*a2*cos(2*th2+th3+th1)
-1/2*m3*rc3*a2*cos(2*th2-+th3-th1)+m3*rc3*d1 *sin(-th1+th3+th2)+m3*rc3*d1*sin(th1+th3+th2)
+cos(th1)*m3*rc3/2-1/2*13yy*cos(2*th3+2*th2+th1)-1/2*13yy*cos(2*th3+2*th2- th1)
+1/2*m3*rc3*a2*cos(th3-th1)+1/2*m3*rc3*a2*cos(th3+th1)+cos(th1)*13zz

NCM4(2,1)= -4*13yy*cos(th3)"2*cos(th2)"2*cos(th1)"2-I1xx+2*I1xx*cos(th1)*2+2*12yy*cos(th1)"2
-I3xx-12yy-13yy-12xx-11yy+l1zz-2*cos(th2)"2 *cos(th1 )2 *I12yy+2*cos(th2)"2*[2xx *cos(th1)"2
-2*m3*rc3/2*cos(th1)"2+2*I3yy*cos(th2)*2*cos(th1)*2+2*I3xx*cos(th1)*2-2*cos(th1)"2*13zz
-2*¥I1zz*cos(th1)"2-2*12zz*cos(th1)"2-4*I3xx*cos(th3)*sin(th2)*sin(th3)*cos(th2)*cos(th1)"2
-4*m3*rc3*cos(th3)*cos(th2)"2*cos(th1)"2*a2+4*m3*rc3 *sin(th3)*sin(th2)*cos(th1)"2*a2*cos(th2)
+4*m3*rc3”2%cos(th3)*sin(th2)*sin(th3)*cos(th2)*cos(th1)"2
-4*m3*rc372*cos(th3)"2*cos(th2)"2*cos(th1)"2+4*I13yy*cos(th3)*sin(th2)*sin(th3)*cos(th2)*cos(th1)*2
+4*I3xx*cos(th3)"2*cos(th2)*2*cos(th1)*2-2*m2 *cos(th2)"2*cos(th1)*2*rc2~2
+2*m3*rc32*cos(th1)"2*cos(th2)"2+2*m3*rc32*cos(th1)*2*cos(th3)"2
-2*m3*cos(th1)"2*a2"2*cos(th2)"2+2*13yy*cos(th3)*2*cos(th1)*2-2*I3xx*cos(th3)*2*cos(th1)"2
-2*I3xx*cos(th2)*2*cos(th1)"2+13zz+12zz

NCM,((2,2)= 2*sin(th1)*cos(th1)*(-m3*rc3/2-2*cos(th2)"2*cos(th3)"2*rc3 2*m3-+ 1 xx+[3xx+12yy
-I1zz+cos(th3)"2*13yy-cos(th3)"2*I3xx-13zz-cos(th2)"2 *I2yy- 12zz+cos(th2)"2*I2xx
+2*cos(th2)*a2*sin(th2)*sin(th3)*rc3*m3+2*cos(th2)*sin(th3)*sin(th2)*cos(th3)*rc3/2*m3
-cos(th2)"2*13xx-2*a2*cos(th2)"2*cos(th3)*rc3*m3-2*cos(th2)*sin(th3 )*sin(th2)*cos(th3)*[3xx
+2*cos(th2)*sin(th3)*sin(th2)*cos(th3)*I3yy+cos(th2)"2*13yy- a2"2*cos(th2)"2*m3
+2*cos(th2)"2*cos(th3)"2*[3xx-rc2"2*cos(th2)"2*m2+cos(th2)*2*rc3/2*m3
-2*cos(th2)"2*cos(th3)"2*I3yy+cos(th3)*2*rc3/2*m3)

NCM,o(2,3)= 1/2*12xx*sin(2*th2-th1)-1/2*12yy*sin(2*th2-+th1)-1/2*m2*rc2/2*sin(2 *th2-th1)
-1/2*m2*rc2"2*sin(2*th2-+th1)+1/2*12xx*sin(2*th2-+th1)-1/2*12yy*sin(2*th2-th1)
-m2*rc2*d0*cos(th2-th1)-m2*rc2*d0*cos(th2-+th1)-m3*a2*d0*cos(th2-th1)-m3*a2*d0*cos(th2+th1)
-m3*rc3*d0*cos(th1+th3+th2)-m3*rc3*d0*cos(-th1+th3+th2)-m3*a2*d1*cos(th2-th1)
-m3*a2*d1*cos(th2+th1)-m3*rc3*d1*cos(-th1+th3+th2)-m3*rc3*d1*cos(th1+th3+th2)
-1/2*m3*a2"2*sin(2*th2+th1)-1/2*m3 *a2"2*sin(2*th2-th1)-m3*rc3*a2*sin(2*th2+th3-+th1)
-m3*rc3*a2*sin(2*th2+th3-th1)-m2*rc2*d1*cos(th2-th1)- m2*rc2*d1*cos(th2+th1)
+1/2*I3xx*sin(2*th3+2*th2-th1)+1/2*I3xx*sin(2 *th3+2*th2+th1)-1/2*13yy*sin(2*th3+2*th2-th1)
-1/2*13yy*sin(2*th3+2*th2+th1)-1/2*m3*rc3/2 *sin(2*th3+2*th2-th1)
-1/2*m3*rc3/2*sin(2*th3-+2*th2+th1)

NCM,(2,4)= -1/4*¥I3xx*cos(2*th2-2*th1+2*th3)+1/4*I3xx*cos(2*th2+2*th1+2*th3)
-1/4*m3*rc3/2*cos(2*th2+2*th1+2*th3)-1/4*I13yy*cos(2*th2+2*th1+2*th3)
+1/4*13yy*cos(2*th2-2*th1+2*th3)+1/4*m3*rc3/2*cos(2*th2-2*th1+2*th3)
-1/4*m2*rc2/2*cos(2*th1+2*th2)+1/4*m2*rc2"2*cos(-2 *th1+2*th2)
+1/2*m3*rc3*a2*cos(th3+2*th2-2*th1)-1/2*m3*rc3*a2 *cos(th3+2*th2+2*th1)
-1/4*12yy*cos(2*th1+2*th2)+1/4*12yy*cos(-2*th1+2*th2)- 1/4*m3*a2/2*cos(2*th1+2*th2)
+1/4*m3*a2/2*cos(-2*th1+2*th2)+1/4*12xx*cos(2*th1+2*th2)-1/4*12xx*cos(-2*th1+2*th2)
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NCM,((2,5)= -1/2*13xx*sin(2 *th3+2*th2)+1/4*[3xx*sin(2*th2+2*th1+2*th3)
+1/4*13xx*sin(2*th2-2*th1+2*th3)-1/4*13yy*sin(2 *th2-2*th1+2*th3)-1/4*I3yy*sin(2*th2+2*th1+2*th3)
-1/4*m3*rc3/2*sin(2*th2-2*th1+2*th3)-1/4*m3*rc3/2*sin(2 *th2+2*th1+2*th3)- 1/2*12xx*sin(2*th2)
+1/2*m3*rc3/2*sin(2*th3-+2*th2)+1/2*12yy*sin(2*th2)+1/2*13yy*sin(2*th3+2*th2)
-1/4*m3*a2"2*sin(-2*th1+2*th2)+1/2*m3*a2/2*sin(2 *th2)-1/4*m3*a2 2 *sin(2*th1+2*th2)
-1/4*m2*rc2/2*sin(2*th1+2*th2)-1/4*m2*rc2°2*sin(-2 *th1+2*th2)+1/2*m2*rc2"2*sin(2*th2)
+2*m3*rc3*d1*cos(th3+th2)+2*m3*rc3*d0*cos(th3-+th2)+1/4*12xx*sin(2*th1+2*th2)
+1/4*¥12xx*sin(-2*th1+2*th2)+m3*rc3*a2*sin(2*th2-+th3)-1/4*12yy*sin(2 *th1+2*th2)
-1/4*12yy*sin(-2*th1+2*th2)+2*m2*cos(th2)*rc2*d1+2*m2*cos(th2)*rc2*d0
-1/2*m3*rc3*a2*sin(th3+2*th2-2*th1)- 1/2*m3*rc3*a2*sin(th3+2*th2+2*th1)+2*m3*cos(th2)*a2*d1
+2*m3*cos(th2)*a2*d0

NCM,((2,6)= -sin(th1)*(-2*cos(th3)"2*rc3/2*m3+2*m2 *rc2*2*cos(th2)*2-2*m3*rc3/2*cos(th2)"2
-4*I3xx*cos(th3)"2*cos(th2)"2+4*13yy*cos(th3)"2*cos(th2)"2+2*m3*a2"2*cos(th2)"2-
2*a2"2*m3+12xx-13xx+13yy-12yy-12zz-13zz+2*cos(th3)"2*I3xx-2*cos(th3)"2*13yy+2*12yy*cos(th2)"2
-2*¥3yy*cos(th2)"2+2*I3xx*cos(th2)"2-2*12xx*cos(th2)"2-2*m2 *sin(th2)*rc2*d1-2*m2 *rc2/2
-2*m3*sin(th2)*a2*d1-2*m3*sin(th3)*cos(th2)*rc3*d0-2*m3*cos(th3)*sin(th2)*rc3*d0
-4*cos(th2)*sin(th3)*m3*rc3*sin(th2)*a2-2*m3*sin(th3)*cos(th2)*rc3*d1
+4*cos(th3)*m3*rc3*a2*cos(th2)*2-2*m3*cos(th3)*sin(th2) *rc3*d1-2*m2 *sin(th2)*rc2*d0
+4*m3*rc32*cos(th2)"2*cos(th3)"2-2*m3*sin(th2)*a2*d0
-4*cos(th2)*sin(th3)*m3*rc3/2*cos(th3)*sin(th2)
-4*cos(th2)*cos(th3)*I3yy*sin(th3)*sin(th2)+4*cos(th2)*cos(th3)*I3xx*sin(th3)*sin(th2)
-4*a2*rc3*m3*cos(th3))

NCM,((2,7)= -1/4*m3 *rc3*a2*cos(th3+2*th1)+1/4*m3*rc3*a2 *cos(-th3+2*th1)
+1/4*13yy*cos(-2*th2+2*th1-2*th3)-1/4*[3xx*cos(-2*th2+2*th1-2*th3)
-1/4*m3*rc3*a2*cos(th3+2*th2+2*th1)+1/4*[3xx*cos(2*th2+2*th1+2*th3)
-1/4*13yy*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3"2*cos(-2*th2+2*th1-2*th3)
-1/4*m3*rc3/2*cos(2*th2+2*th1+2*th3)+1/4*m3*rc3*a2 *cos(-th3-2*th2+2*th1)

NCM,(2,8)= 2*m3*rc3*d0*cos(th3-+th2)-1/2*I3xx*sin(2*th3+2*th2)
+1/4*m3*1c372*sin(-2%th2+2*th1-2*th3)-1/4*m3*rc3°2*sin(2*th2+2*th1+2*th3)
-3/2*m3*sin(th3)*rc3*a2+1/2*m3*c3A2*sin(2*th3+2*th2) +1/2*[3yy*sin(2*th3+2*th2)
+2*m3*rc3*d1*cos(th3+th2)-1/4*m3*rc3*a2*sin(th3+2*th2+2*th1)
+1/4*m3*rc3*a2*sin(-th3-2*th2+2*th1)-1/4*I3yy*sin(2*th2+2*th1+2%th3)
+1/4*I3yy*sin(-2*th2+2%th1-2*th3)+1/2*m3*rc3*a2*sin(th3+2*th2)
-1/4*m3*rc3*a2*sin(th3+2*th1)+1/4*m3*rc3*a2*sin(-th3+2*th1 )+ 1/4*13xx*sin(2*th2+2*th1+2*¢h3)
-1/4*3xx*sin(-2%th2+2*th1-2*¢h3)

NCM,o(2,9)= m3*rc3*d0*cos(-th2+th1-th3)-m3*rc3*d0*cos(th2-+th1+th3)
-m3*rc3*d1*cos(th2+th1+th3)+m3*rc3*d1*cos(-th2+th1- th3)+sin(th1)*I3zz+sin(th1)*m3*rc3/2
+1/2*m3*rc3*a2*sin(th1+th3)+1/2*m3*rc3*a2*sin(th1-th3)-1/2*m3*rc3/2*sin(2*th2+th1+2*th3)
-1/2*m3*rc3/2*sin(-2*th2-+th1-2*th3)+1/2*[3xx*sin(2*th2+th1+2*th3)+1/2*I3xx*sin(-2 *th2+th1-2*th3)
-1/2*13yy*sin(2*th2+th1+2*th3)-1/2*¥13yy*sin(-2*th2-+th1-2*th3)-1/2*m3*rc3*a2 *sin(2 *th2-+th1-+th3)
-1/2*m3*rc3*a2*sin(-2*th2+th1-th3)

NCM,(3,1)=0

NCM,((3,2)=0

NCM(3,3)=0
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NCM.o(3,4)= cos(th1)*(2*m3*rc3/2*cos(th3)"2+2*m3*rc3/2*cos(th2)*2-2*m2*cos(th2)*2*rc2°2
-4*[3yy*cos(th3)"2*cos(th2)"2+4*I3xx*cos(th3)"2*cos(th2)*2-2*m3 *cos(th2)"2*a2/2-2*m3 *rc3/2
-2*12yy*cos(th2)*2+2*12xx*cos(th2)"2-2*I3xx*cos(th2)"2+2*13yy*cos(th2)"2+2*13yy*cos(th3)*2
-2*I3xx*cos(th3)"2-4*sin(th2)*sin(th3)*I3xx*cos(th3)*cos(th2)
+4*sin(th2)*sin(th3)*I3yy*cos(th3)*cos(th2)- 4*cos(th3)*m3*rc3*cos(th2)"2*a2
+4*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2+4*sin(th2)*sin(th3)*m3*rc3/2*cos(th3)*cos(th2)+13xx-13yy
-4*m3*rc3/2*cos(th3)"2*cos(th2)"2-1322-12zz+12yy-12xx)

NCM,o(3,5)= -sin(th1)*(2*m3 *rc32-13xx+13yy+I3zz-2*m3 *rc3/2*cos(th3)"2
+4*I3yy*cos(th3)"2*cos(th2)"2+2*m3*cos(th2)"2*a2"2-4*I3xx*cos(th3)"2*cos(th2)"2
-4*sin(th2)*sin(th3)*m3*rc3/2*cos(th3)*cos(th2)+4*sin(th2)*cos(th3)*I3xx*sin(th3)*cos(th2)
+2*I3xx*cos(th2)*2-4*sin(th2)*cos(th3)*I3yy*sin(th3)*cos(th2)- 4*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2
+4*cos(th3)*m3*rc3*cos(th2)"2*a2-2*12xx*cos(th2)"2-2*13yy*cos(th3)"2-2*13yy*cos(th2)"2
+2*3xx*cos(th3)"2+2*12yy*cos(th2)"2+4*m3 *rc3/2*cos(th3)*2*cos(th2)"2+2 *m2*cos(th2)"2*rc2/2
-2*m3*rc3/2*cos(th2)*2+12zz-12yy+12xx)

NCM,o(3,6)= I3xx*sin(2*th3+2*th2)-m3*rc3/2 *sin(2 *th3+2*th2)-13yy*sin(2 *th3+2*th2)
-2*m3*rc3*a2*sin(th3+2*th2)+12xx*sin(2*th2)-m3*a2/2*sin(2 *th2)-12yy*sin(2 *th2)
-m2*rc2°2*sin(2*th2)

NCM,o(3,7)= -13zz*cos(th1)-1/2*m3 *rc3*a2*cos(2*th2+th1+th3)-m3*rc3/2*cos(th1)
-1/2*m3*rc3/2*cos(-2*th2+th1-2*th3)-1/2*m3*rc3/2*cos(2 *th2+th1+2*th3)
-1/2*m3*rc3*a2*cos(-2*th2-+th1-th3)-1/2*m3*rc3*a2*cos(th1-th3)- 1/2*m3*rc3*a2*cos(thl-+th3)
+1/2*I3xx*cos(-2*th2+th1-2*th3)+1/2*[3xx*cos(2*th2-+th1+2*th3)-1/2*13yy*cos(-2*th2+th1-2*th3)
-1/2*13yy*cos(2*th2+th1+2*th3)

NCM,(3,8)= 1/2*I3xx*sin(-2*th2-+th1-2*th3)-1/2*m3*rc3*a2*sin(2*th2-+th1+th3)
-1/2*m3*rc3*a2*sin(-2*th2+th1-th3)-1/2*m3*rc3*a2 *sin(th1+th3)-1/2*m3*rc3*a2 *sin(th1-th3)
-I3zz*sin(th1)+1/2*I3xx*sin(2*th2+th1+2*th3)-1/2*[3yy*sin(2*th2-+th1+2*th3)
-1/2*3yy*sin(-2*th2-+th1-2*th3)-1/2*m3*rc3"2 *sin(-2*th2+th1-2*th3)
-1/2*m3*rc3/2*sin(2*th2+th1+2*th3)-m3*rc3/2*sin(th1)

NCM.(3,9)= -m3*sin(th3)*rc3*a2-m3*rc3*a2*sin(th3+2*th2)+I3xx*sin(2*th3+2*th2)
-m3*rc3°2*sin(2*th3+2*th2)-I3yy*sin(2*th3+2*¢h2) (A-22)

A.1.3. Joint Torque Effects

Rigid Inertia Joint Torques

E+L—~(G+E+J-K)G—(E+J)C +2c,c, [ N+(E+J)c,] 0 0
B= 0 E+H+K+2Ne, E+I_+Ne, | (A23)
0 E+1,, +Nc, E+l,,
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Rigid Coriolis Joint Torques

NR(1,1)= -Ksin(2*th2)-I2yy*sin(2*th2)-E*sin(2*th3+2*th2)- 2*B*a2*sin(2*th2+th3)
+I2xx*sin(2*th2)-13yy*sin(2*th3+2*th2)+I3xx*sin(2*th3+2*th2)

NRy(1,2)= -B*sin(th3)*a2-E*sin(2*th3+2*th2)-B*a2*sin(2*th2+th3) -T*sin(2*th3+2*th2)

NR,(2,3)= -2*sin(th3)*B*a2

NR(1,3)=NR(2,1)=NR(2,2)=NR(3,1)=NR(3,2)=NR(3,3)=0 (A-24)

Rigid Centrifugal Joint Torques

NR,(2,1)= 1/2*(E+T)*sin(2*th3+2*th2)+1/2*(K-G)*sin(2*th2) +B*a2*sin(2*th2+th3)

NR,(2,3)= -sin(th3)*B*a2

NR((3,1)= 1/2*(E+])*sin(2*th3+2*th2) +1/2*sin(th3)*B*a2+1/2*B*a2*sin(2*th2+th3)

NR.(3,2)= sin(th3)*B*a2

NC,(1,1)=NR(1,2)=NR(1,3)=NRy(2,2)=NR(3,3)=0 (A-25)

Rigid Gravitational Joint Torques

0
G, =| Bgcos(6, +06,)+ Agcosb, (A-26)
Bgcos(6, +6,)

Flexible Body Inertia Joint Torques

A(1,1)=-sin(th1)*(-B*sin(th3)*sin(th2)+cos(th2)*B*cos(th3)+A*cos(th2))

A(1,2)= cos(th1)*(-B*sin(th3)*sin(th2)-+cos(th2)*B*cos(th3)+A*cos(th2))

A(1,3)=0

A(2,1)= -cos(th1)*(B*sin(th3)*cos(th2)+B*cos(th3)*sin(th2)+A *sin(th2))

AY2,2)= -sin(th1)*(B*sin(th3)*cos(th2)+B*cos(th3)*sin(th2)+A *sin(th2))

A(2,3)= B*cos(th2-+th3)+A*cos(th2)

A(3,1)= -B*cos(th1)*(sin(th3)*cos(th2)+cos(th3 )*sin(th2))

A(3,2)= -B*sin(th1)*(sin(th3)*cos(th2)+cos(th3)*sin(th2))

A(3,3)= B*cos(th2+th3) (A-27)

Flexible Body Coriolis Joint Torques

NRC.(1,1)= (2*cos(th1)"2-1)*(2*I3yy*cos(th2)"2*cos(th3)"2-2 *sin(th2)*cos(th3)*I3yy*sin(th3)*cos(th2)
+m3*cos(th2)*2*a2"2-2*I3xx*cos(th3)"2*cos(th2)"2+13xx*cos(th3)"2-m3*rc3/2 *cos(th2)"2
-m3*rc32*cos(th3)"2+11zz-13xx-12yy+12yy*cos(th2)*2-12xx*cos(th2)"2+12zz+13zz- 13yy*cos(th2)"2
+m3*rc32+3xx*cos(th2)"2-13yy*cos(th3)"2- I1xx+2*m3*rc3”2*cos(th3)"2*cos(th2)"2
+m2*cos(th2)"2*rc2°2+2*cos(th3)*m3*rc3*cos(th2)*2*a2+2 *sin(th2) *sin(th3) *I3xx*cos(th3) *cos(th2)
-2*sin(th2)*sin(th3)*m3*rc3 *cos(th2)*a2-2*sin(th2)*sin(th3)*m3*rc3/2*cos(th3)*cos(th2))

NRC(1,2)=-sin(th1)*(- cos(th3)*I3yy*sin(th3)+sin(th2)*12yy*cos(th2)+sin(th2)*I13xx*cos(th2)

+sin(th3)*I3xx*cos(th3)- cos(th2)*I3yy*sin(th2)+2*cos(th3)*m3 *rc3/2*sin(th3)*cos(th2)"2
+cos(th2)*re2*m2*d0+cos(th2)*m3*d1*a2-2*cos(th3)*I3xx*sin(th3)*cos(th2)"2
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+cos(th2)*cos(th3)*m3*rc3*d0+2*m3*sin(th3)*cos(th2)*2*rc3*a2+cos(th2)*cos(th3)*m3*rc3*dl
+2*cos(th2)*cos(th3)*m3*rc3 *sin(th2)*a2-+cos(th2)*m3*sin(th2)*a2/2+cos(th2) *m2*sin(th2)*rc2"2
-sin(th2)*m3*rc3”2*cos(th2)-2*cos(th2) *I3xx*cos(th3)*2*sin(th2)-sin(th2) *sin(th3)*m3*rc3*d0
-sin(th2)*sin(th3)*m3*rc3*d1-sin(th3)*m3*rc3*a2- sin(th3)*m3*rc3"2*cos(th3)+cos(th2)*m3*d0*a2
+2*sin(th3)*I3yy*cos(th3) *cos(th2)"2+2*sin(th2) *I3yy*cos(th3)"2*cos(th2)
+2*cos(th2)*m3*rc3/2*cos(th3)"2*sin(th2)-cos(th2)*I2xx *sin(th2)+cos(th2)*rc2*m2*d1)

NRC(1,3)= cos(thl)*(-cos(th2)*I3yy*sin(th2)+sin(th2) *I3xx*cos(th2)-cos(th3) *I3yy*sin(th3)

- cos(th2)*I2xx*sin(th2)+sin(th2)*12yy*cos(th2)+sin(th3)*I3xx*cos(th3)
+2*cos(th3)*m3*rc3/2*sin(th3)*cos(th2)"2-sin(th3)*m3*rc3/2*cos(th3)- sin(th3)*m3*rc3*a2
+2*m3*sin(th3)*cos(th2)"2*rc3*a2-sin(th2)*sin(th3)*m3*rc3*d1- sin(th2)*m3*rc3"2*cos(th2)
+2*sin(th3)*I3yy*cos(th3)*cos(th2)"2-2*cos(th3)*I3xx*sin(th3)*cos(th2)"2
-2*cos(th2)*I3xx*cos(th3)"2*sin(th2)- sin(th2)*sin(th3)*m3*rc3*d0

+2*cos(th2)*cos(th3)*m3*rc3 *sin(th2)*a2+cos(th2)*m2 *sin(th2)*rc2/2+cos(th2) *rc2 *m2*d1
+cos(th2)*re2*m2*d0+cos(th2)*m3*d0*a2+cos(th2)*m3*d1*a2-+cos(th2) *cos(th3)*m3*rc3*d1
+cos(th2)*cos(th3)*m3*rc3*d0+2*cos(th2)*m3 *rc3/2 *cos(th3)*2 *sin(th2)+cos(th2)*m3 *sin(th2)*a2"2
+2*sin(th2)*I3yy*cos(th3)"2*cos(th2))

NRC,(2,1)= -1/4*m3*1c32*cos(2*th2-2*th1+2*th3)+1/4*m3*rc3/2*cos(2*th2+2*th1+2*th3)
-1/4*13xx*cos(2*th2+2*th1+2*th3)+1/4*13yy*cos(2*th2+2*th1+2*th3)
-1/4*13yy*cos(2*th2-2*th1+2*th3)+1/4*13xx*cos(2*th2-2*th1+2*th3)+1/4*[2yy*cos(2*th1+2*th2)
-1/4*¥12xx*cos(2*th1+2*th2)+1/4*12xx*cos(-2 *th1+2*th2)-1/4*12yy*cos(-2 *th1+2*th2)
+1/4*m3*a2”2*cos(2*th1+2*th2)-1/4*m3*a2"2*cos(-2*th1+2*th2)+1/4*m2*rc2"2*cos(2*th1+2*th2)
-1/4*m2*rc2/2*cos(-2*th1+2*th2)+1/2*m3*rc3*a2*cos(2*th2+th3+2*th1)

- 1/2*m3*rc3*a2*cos(2*th2+th3-2*th1)

NRC(2,2)= cos(th1)*(- 4*I3xx*cos(th3)"2*cos(th2)*2+4*13yy*cos(th3)"2*cos(th2)"2
+2*m2*cos(th2)"2*rc2"2-2*m3*rc3/2*cos(th3)*2+2*m3*cos(th2)"2*a2"2+m3 *rc3"2-m2*rc2"2
-2*cos(th2)"2*12xx+2*13xx*cos(th2)*2-2*13yy*cos(th2)*2+2*3xx*cos(th3)"2-13xx+12xx-12yy+I3yy
-4*m3*rc3/2*cos(th3)*cos(th2)*sin(th3)*sin(th2)- 4*m3*rc3*sin(th3)*cos(th2)*a2 *sin(th2)
+4*m3*rc3*cos(th3)*cos(th2)"2*a2-4*[3yy*cos(th3)*cos(th2)*sin(th3)*sin(th2)

- m3*rc3*cos(th3)*sin(th2)*d0-m3*rc3*sin(th3)*cos(th2)*d0+4*13xx*cos(th3 )y *cos(th2)*sin(th3)*sin(th2)
-m3*rc3*cos(th3)*sin(th2)*d1-rc2*m2*sin(th2)*d1-m3*a22-m3*rc3*sin(th3)*cos(th2)*d1
-2*m3*rc3/2*cos(th2)*2-rc2*m2*sin(th2)*d0-m3*sin(th2)*d1*a2-2*m3*rc3*cos(th3)*a2
-m3*sin(th2)*d0*a2+4*m3*rc3*2*cos(th3)"2*cos(th2)"2-2*13yy*cos(th3)"2+2*cos(th2)"2*12yy)

NRC,(2,3)= - sin(th1)*(m3*a2"2+rc2*m2*sin(th2)*d1+2*13yy*cos(th3)"2+2*cos(th2)"2*12xx
+m3*rc3*cos(th3)*sin(th2)*d0+4*m3*rc3*sin(th3)*cos(th2)*a2 *sin(th2)-2*13xx*cos(th2)"2
-2*I3xx*cos(th3)*2+m3*rc3*sin(th3)*cos(th2)*d1-4*m3*rc3*cos(th3)*cos(th2)"2*a2
+m3*rc3*cos(th3)*sin(th2)*d1-2*cos(th2)"2*12yy+2*I3yy*cos(th2)"2
+4*I3yy*cos(th3)*cos(th2)*sin(th3)*sin(th2)+4*m3*rc3/2*cos(th3)*cos(th2)*sin(th3 ) *sin(th2)
+2*m3*rc3”2*cos(th3)"2-2*m3*cos(th2)"2*a2"2-4*13yy*cos(th3)"2*cos(th2)"2-2*m2 *cos(th2)"2*rc2/2
+4*I3xx*cos(th3)"2*cos(th2)"2+2*m3*rc32 *cos(th2)"2+2*m3*rc3*cos(th3)*a2+m3 *sin(th2)*d0*a2
+m3*sin(th2)*d1*a2-+rc2*m2*sin(th2)*d0+13xx-I12xx+12yy-13yy
-4*I3xx*cos(th3)*cos(th2)*sin(th3)*sin(th2) +m3*rc3*sin(th3)*cos(th2)*d0
-4*m3*rc3/2*cos(th3)*2*cos(th2)*2+m2*rc2"2-m3*1¢3/2)

NRC(3,1)= 1/4*m3*rc3/2*cos(2*th2+2*th1+2*th3)-1/4*m3*rc3/2*cos(2 *th2-2*th1+2*th3)
-1/4*m3*rc3*a2*cos(th3-2*th1)+1/4*m3*rc3*a2*cos(th3+2*th1)+1/4*13yy*cos(2*th2+2*th1+2*th3)
-1/4*13yy*cos(2*th2-2*th14+2*th3)+1/4*I3xx*cos(2*th2-2*th1+2*th3)

- 1/4*13xx*cos(2*th2+2*th1+2*th3) +1/4*m3*rc3*a2*cos(2*th2+th3+2*th1)
-1/4*m3*rc3*a2*cos(2*th2-+th3-2*th1)
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NRC(3,2)= 1/2*13yy*cos(-th1+2*th3+2*th2)+1/2*I3yy*cos(th1+2*th3+2*th2)
-1/2*I3xx*cos(-th1+2*th3+2*th2)-1/2*13xx*cos(th1+2*th3+2*th2)
+1/2*m3*rc3/2*cos(-th1+2*th3+2*th2) +1/2*m3*rc3/2*cos(th1+2*th3+2*th2)
-1/2*m3*rc3*d1*sin(th2+th1+th3)-1/2*m3*rc3*d1 *sin(th2-th1+th3)-1/2*m3*rc3*d0*sin(th2+th1+th3)
-1/2*m3*rc3*d0*sin(th2-th1+th3)+1/2*m3*rc3*a2*cos(2*th2- th1+th3)
+1/2*m3*rc3*a2*cos(2*th2+th1+th3)

NRC(3,3)= 1/2*m3*rc3*a2*sin(2*th2-+th1+th3)-1/2*m3*rc3*a2*sin(2*th2-th1+th3)
-1/2*m3*rc3*d0*cos(th2-th1+th3)+1/2*m3*rc3*d0*cos(th2-+th1+th3)-1/2*I3yy*sin(-th1+2*th3+2*th2)
+1/2*13yy*sin(th1+2*th3+2*th2)+1/2*[3xx*sin(-th1+2*th3+2*th2)-1/2*I3xx*sin(th1+2*th3+2*th2)
-1/2*m3*rc3*d1*cos(th2-th1+th3)+1/2*m3*rc3*d1*cos(th2-+th1+th3)
-1/2*m3*rc3"2*sin(-th1+2*th3+2*th2) +1/2*m3*rc3/2*sin(th1+2*th3+2*th2) (A-28)

Flexible Body Coriolis Joint Torques

NCC(1,1)= -sin(th1)*cos(th1)*(2*m3*rc3*cos(th3)*cos(th2)"2*a2
-2*13yy*cos(th3)*cos(th2)*sin(th3)*sin(th2) +2*I3xx*cos(th3)*cos(th2)*sin(th3)*sin(th2)
+m2*cos(th2)*2*rc2/2+m3*cos(th2)"2*a2"2+2*13yy*cos(th3)"2*cos(th2)"2
-2*¥I3xx*cos(th3)"2*cos(th2)"2-m3*rc3/2*cos(th3)"2-m3*rc32*cos(th2)"2+I3xx*cos(th3)"2
+I3xx*cos(th2)"2+12yy*cos(th2)"2-12xx*cos(th2)"2-13yy*cos(th2)*2-13yy*cos(th3)"2
-2*m3*rc3/2*cos(th3 )*cos(th2)*sin(th3)*sin(th2)- 2*m3*rc3*sin(th3)*cos(th2)*a2*sin(th2)
+2*m3*rc3/2*cos(th3)"2*cos(th2)2+m3*rc32-13xx-12yy+13zz+12zz-11 xx+1122)

NCC(1,2)=sin(thl)*cos(th1)*(2*m3*rc3*cos(th3)*cos(th2)"2*a2
-2*¥13yy*cos(th3)*cos(th2)*sin(th3 )*sin(th2) +2*I3xx*cos(th3)*cos(th2)*sin(th3)*sin(th2)
+m2*cos(th2)"2*rc2/2+m3*cos(th2)"2*a2"2+2*I3yy*cos(th3)"2*cos(th2)"2
-2*¥I3xx*cos(th3)"2*cos(th2)2-m3 *rc3/2*cos(th3)"2-m3 *rc32*cos(th2)"2+I3xx*cos(th3)"2
+I3xx*cos(th2)"2+12yy*cos(th2)*2-12xx *cos(th2)"2-13yy*cos(th2)"2-13yy*cos(th3)"2
-2*m3*re¢3/2%cos(th3)*cos(th2)*sin(th3)*sin(th2)- 2*m3*rc3*sin(th3)*cos(th2)*a2*sin(th2)
+2*m3*rc3/2*cos(th3)"2*cos(th2)*2+m3*rc32-13xx-12yy+13zz+12zz-11xx+112z)

NCC,(1,3)=0

NCC.(2,1)= -1/8*13yy*sin(2*th2-2*th1+2*th3)- 1/8*I3yy*sin(2*th2+2*th1+2*th3)
+1/4*¥13xx*sin(2*th3+2*th2)+1/8*[3xx*sin(2*th2-2*th1+2*th3)+1/8*I3xx*sin(2*th2+2*th1+2*th3)
-m3*rc3*d0*cos(th2-+th3)-1/4*m3*rc3/2*sin(2*th3+2*th2)-1/8*m3*rc3"2 *sin(2*th2+2*th1+2*th3)
-1/8*m3*rc3/2*sin(2*th2-2*th1+2*th3)-rc2*m2*cos(th2)*d1-rc2*m2*cos(th2)*d0
-1/2*m3*rc3*a2*sin(2*th2-+th3) -1/4*m3*rc3*a2*sin(2*th2-+th3+2*th1)
-1/4*m3*rc3*a2*sin(2*th2+th3-2*th1) -m3*rc3*d1*cos(th2+th3)-1/4*13yy*sin(2*th3+2*th2)
-m3*cos(th2)*d0*a2-m3*cos(th2)*d1*a2-1/4*m3*a2"2*sin(2*th2)-1/8*m3*a2"2*sin(2*th1+2*th2)
-1/8*m3*a2"2*sin(-2*th1+2*th2)-1/4*12yy*sin(2*th2)-1/8*12yy*sin(2 *th1+2*th2)
-1/8*12yy*sin(-2*th1+2*th2)+1/8*12xx*sin(2*th1+2*th2)+1/8*12xx*sin(-2 *th1+2*th2)
+1/4*12xx*sin(2*th2)-1/8*m2*rc22*sin(2 *th1+2*th2)-1/8*m2*rc2/2*sin(-2 *th1+2*th2)
-1/4*m2*rc2/2*sin(2*th2)

NCC(2,2)= 1/8*13yy*sin(2*th2+2*th1+2*th3)-1/4*I3yy*sin(2*th3+2*th2)+1/4*I3xx*sin(2 *th3+2*th2)
-1/8*I3xx*sin(2*th2-2*th1+2*th3)-1/8*I3xx*sin(2*th2-+2*th1+2*th3)+1/8*13yy*sin(2*th2-2*th1+2*th3)
-rc2*m2*cos(th2)*d1-rc2*m2*cos(th2)*d0-m3*rc3*d1*cos(th2+th3)-1/2*m3*rc3*a2*sin(2 *th2+th3)
-m3*cos(th2)*d0*a2-m3*cos(th2)*d1*a2- m3*rc3*d0*cos(th2+th3)
+1/4*m3*rc3*a2*sin(2*th2+th3+2*th1) +1/4*m3*rc3*a2 *sin(2*th2-+th3-2*th1)
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-1/8*12xx*sin(2*th1+2*th2)-1/8*12xx*sin(-2*th1+2*th2)+1/4*12xx*sin(2*th2)
+1/8*m3*a2~2*sin(2*th1+2*th2) +1/8*m3*a2/2*sin(-2*th1+2*th2)-1/4*m3*a2/2*sin(2*th2)
-1/4*12yy*sin(2*th2)+1/8*12yy*sin(2*th1+2*th2)+1/8*12yy*sin(-2*th1+2*th2)
-1/4*m3*rc3/2*sin(2*th3+2*th2)+1/8*m2*rc2/2 *sin(2 *th1+2*th2)+1/8*m2 *rc22*sin(-2 *th1+2*th2)
-1/4*m2%*rc2/2*sin(2*th2)+1/8*m3*rc3/2*sin(2*th2+2*th1+2*th3)
+1/8*m3*rc3/2*sin(2*th2-2*th1+2*th3)

NCC,(2,3)= 1/2*m2*1c2"2*sin(2*th2)+1/2*m3*a2"2*sin(2*th2)+1/2*m3*rc3"2*sin(2*th3+2*th2)
-1/2*T3xx*sin(2*th3+2*th2)- 1/2*I2xx*sin(2*th2)+m3*rc3*a2*sin(2*th2+th3)
+1/2*13yy*sin(2*th3+2*th2)+1/2*12yy*sin(2*th2)

NCC.(3,1)= -1/4*m3*rc3"2*sin(2*th3+2*th2)-1/8 *m3*rc3/2*sin(2 *th2-2*th1+2*th3)
-1/8*m3*rc3/2*sin(2*th2+2*th1+2*th3)+1/4*[3xx*sin(2*th3+2*th2)+1/8*[3xx*sin(2*th2+2*th1+2*th3)
+1/8*13xx*sin(2*th2-2*th1+2*th3)-1/8*m3*rc3*a2*sin(th3-2*th1)-1/8*I3yy*sin(2*th2-2*th1+2*th3)
-m3*rc3*d1*cos(th2+th3)-1/8*m3*rc3*a2*sin(th3+2*th1)+3/4*m3*rc3*a2*sin(th3)

- m3*rc3*d0*cos(th2+th3) -1/8*m3*rc3*a2*sin(2*th2+th3-2*th1)-1/8*m3 *rc3*a2*sin(2*th2-+th3+2*th1)
-1/8*13yy*sin(2*th2+2*th1+2*th3)-1/4*[3yy*sin(2*th3+2*th2)-1/4*m3*rc3 *a2*sin(2*th2+th3)

NCC.(3,2)= 3/4*m3*rc3*a2*sin(th3)- 1/4*m3*rc3/2*sin(2*th3+2*th2)
+1/8*m3*rc3/2*sin(2*th2+2*th1+2*th3) +1/8*m3*rc32*sin(2*th2-2*th1+2*th3)
-1/4*13yy*sin(2*th3+2*th2)+1/8*I3yy*sin(2*th2+2*th1+2*th3)+1/8*[3yy*sin(2*th2-2*th1+2*th3)
-1/4*m3*rc3*a2*sin(2*th2+th3)+1/8*m3*rc3*a2*sin(2*th2+th3+2*th1)
+1/8*m3*rc3*a2*sin(2*th2-+th3-2*th1)+1/8*m3*rc3*a2 *sin(th3+2*th1)+1/8*m3*rc3*a2 *sin(th3-2*th1)
-m3*rc3*d1*cos(th2+th3)-1/8*3xx*sin(2*th2+2*th1+2*th3)-1/8*I3xx*sin(2*th2-2*th1+2*th3)
-m3*rc3*d0*cos(th2-+th3)+1/4*[3xx*sin(2*th3+2*th2)

NCC(3,3)= 1/2*m3*rc3*a2*sin(th3)+1/2*m3*rc3*a2*sin(2#th2-+th3)+1/2*m3*rc3°2*sin(2*th3+2*th2)
-1/2*I3xx*sin(2*th3+2*th2)+1/2*I3yy*sin(2*th3+2*th2) (A-29)

Flexible Body Rotational Inertia Torques

Bw(1,1)= -cos(th1)*(-sin(th3)*I3yy*cos(th3)- a2*rc3*sin(th3)*m3+2*m3*sin(th3)*cos(th2)"2*rc3*a2
+cos(th2)*cos(th3)*m3*rc3*d1+cos(th2)*cos(th3)*m3*rc3*d0- sin(th3)*rc3/2*m3*cos(th3)
+cos(th2)*rc2*m2*d0+2*cos(th3)*m3*rc3/2*sin(th3)*cos(th2)"2
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2+cos(th2)*rc2*m2*d1- sin(th2)*m3*rc3/2*cos(th2)
+2*cos(th3)*I3yy*sin(th3)*cos(th2)"2- sin(th2)*sin(th3)*m3*rc3*d0
+2*cos(th2)*m3*rc3/2*cos(th3)"2*sin(th2)- sin(th2)*sin(th3)*m3*rc3*d1+cos(th2)*m3*d1*a2
+2*cos(th2)*I3yy*cos(th3)"2*sin(th2)-2*I3xx*sin(th3)*cos(th3)*cos(th2)"2+cos(th2)*m2*sin(th2) *rc22
-2*sin(th2)*I3xx*cos(th3)"2*cos(th2)+sin(th2)*I3xx*cos(th2)- cos(th2)*I3yy*sin(th2)
+cos(th2)*12yy*sin(th2) -sin(th2)*12xx*cos(th2)+cos(th3)*sin(th3)*I3xx
+cos(th2)*m3*sin(th2)*a2/2+cos(th2)*m3*d0*a2)

Bw.(1,2)= -sin(th1)*(-sin(th3)*rc3/2*m3*cos(th3)- a2*rc3*sin(th3)*m3
+2*cos(th2)*cos(th3)*m3*rc3*sin(th2)*a2-sin(th2)*sin(th3)*m3*rc3*d0
+2*cos(th2)*m3*rc3"2*cos(th3)"2*sin(th2)- sin(th2)*sin(th3)*m3*rc3*d1
+2*m3*sin(th3)*cos(th2)"2*rc3*a2+2*cos(th3)*m3 *rc3/2*sin(th3)*cos(th2)*2+cos(th2) *rc2*m2*d 1
-2*I3xx*sin(th3)*cos(th3)*cos(th2)*2-sin(th2)*m3 *rc3/2*cos(th2)- 2*sin(th2)*I3xx*cos(th3)"2*cos(th2)
+2*cos(th3)*I3yy*sin(th3)*cos(th2)"2+2*cos(th2)*I3yy*cos(th3)"2 *sin(th2)+cos(th2)*m3*d1*a2
+cos(th2)*cos(th3)*m3*rc3*d1+cos(th2)*cos(th3)*m3*rc3*d0+cos(th2) *rc2*m2*d0
+cos(th2)*m2*sin(th2)*rc2/2+cos(th2)*m3*d0*a2+cos(th2)*m3 *sin(th2) *a22+cos(th2)*I3xx*sin(th2)
+cos(th2)*12yy*sin(th2)-sin(th2)*I12xx*cos(th2)+cos(th3)*sin(th3)*I3xx-sin(th3)*I13yy*cos(th3)
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-cos(th2)*I3yy*sin(th2))

Bw(1,3)= 1/2*12xx+1/2*12yy-1/2*13xx*cos(2*th3+2*th2)+m3 *1c3*a2 *cos(2 *th2-+th3)
+1/2*m3*1c3/2*cos(2*th3+2*th2)+1/2*13yy*cos(2*th3+2*th2)+11yy+1/2*m3*rc3/2+1/2*13xx
+1/2*12yy*cos(2*th2)+1/2*13yy-1/2*¥12xx*cos(2*th2)+1/2*m3*a2/2+1/2*m3*a2"2*cos(2*th2)
+cos(th3)*m3*rc3*a2+1/2*m2*1c2"2+1/2*m2*rc22*cos(2*th2)

Bw+(2,1)= sin(th1)*(13zz+m3*sin(th2)*d1*a2+m3*sin(th2)*d0*a2+rc2*m2*sin(th2)*d0
+rc2*m2*sin(th2)*d1+m2*rc2"2+m3*a2"2+m3*rc3*sin(th3) *cos(th2)*d1+m3*rc3*cos(th3 ) *sin(th2)*do0
+m3*rc3*cos(th3)*sin(th2)*d1+2*cos(th3)*m3*rc3*a2+m3*rc3*sin(th3) *cos(th2)*d0+m3*rc3/2+12zz)

Bwi(2,2)= - cos(th1)*(13zz+m3*sin(th2)*d1*a2+m3*sin(th2)*d0*a2+rc2*m2*sin(th2)*d0
+rc2*m2*sin(th2)*d1+m2*rc2/2+m3*a2/2+m3*rc3*sin(th3)*cos(th2)*d1+m3*rc3*cos(th3 ) *sin(th2)*d0
+m3*rc3*cos(th3)*sin(th2)*d1+2*cos(th3)*m3 *rc3*a2+m3*rc3*sin(th3)*cos(th2)*d0+m3 *rc3/2-+12zz)

Bw.(3,1)= sin(th1)*(m3*rc3*sin(th3)*cos(th2)*d0+m3*rc3*sin(th3)*cos(th2)*d1
+m3*rc3*cos(th3)*sin(th2)*d0+m3*rc3*cos(th3)*sin(th2)*d1+m3*rc3*cos(th3)*a2+m3*rc3"2+13zz)

By.(3,2)= - cos(th1)*(d0*cos(th2)*sin(th3)*rc3*m3+d1*cos(th2)*sin(th3)*rc3*m3
+d0*sin(th2)*cos(th3)*rc3*m3+d1*sin(th2)*cos(th3)*rc3*m3+a2*cos(th3)*rc3*m3+rc3/2*m3+13zz)

Bw(2,3)=Bw«(3,3)=0 (A-30)

Cross Coupling Interaction Torque Effects

Nem(1,1)=Neme(1,2)=Neme(1,3)=Nem(2,4)=Nemd(2,5)=Neme(2,6)= Nemd2,9)= Newe(3,6)=Newe(3,7)=
NCMT(3 s8)=NCM‘r(3 39)=0

Nem{ 1,4)= cos(th1)*(-12xx-13zz-2*1¢3/2*m3+2*cos(th3)"2*rc3/2*m3-2*m2*cos(th2)"2*rc2/2
+2*m3*rc3/2*cos(th2)"2-2*m3 *cos(th2)"2*a2"2+4*I3xx*cos(th3)*2*cos(th2)"2
-4*13yy*cos(th3)*2*cos(th2)"2-13yy-12zz+12yy+I3xx+2*cos(th3)"2*13yy-2*cos(th3)"2*I3xx
+2*I2xx*cos(th2)"2-2*12yy*cos(th2)"2+2*13yy*cos(th2)"2-2*13xx*cos(th2)"2
+4*sin(th2)*sin(th3)*I3yy*cos(th3)*cos(th2)-4*sin(th2)*sin(th3)*I3xx*cos(th3)*cos(th2)
-4*cos(th3)*m3*rc3*cos(th2)"2*a2-4*m3*rc3/2*cos(th3)"2*cos(th2)"2
+4*gin(th2)*sin(th3)*m3*rc3*cos(th2)*a2+4*sin(th2)*sin(th3)*m3*rc32*cos(th3)*cos(th2))

Neme(1,5)= sin(th1)*(-12xx- 13zz+4*sin(th2)*sin(th3)*m3*rc3/2*cos(th3)*cos(th2)
+4*sin(th2)*cos(th3)*I3yy*sin(th3)*cos(th2)- 4*sin(th2)*cos(th3)*I3xx*sin(th3)*cos(th2)
+2*m3*rc372*cos(th2)"2+2*m3*rc3/2*cos(th3)"2-4*13yy*cos(th3)2*cos(th2)"2
+4*13xx*cos(th3)"2*cos(th2)"2-2*m2 *cos(th2)"2*1c2"2-2*m3 *cos(th2)"2*a2"2-2*m3*rc3/2
-4*cos(th3)*m3*rc3*cos(th2)"2*a2-2*13xx*cos(th3)"2+4*sin(th2)*sin(th3)*m3*rc3*cos(th2)*a2
-2*12yy*cos(th2)*2-13yy-12zz+12yy+I13xx-2 *¥I3xx*cos(th2)"2+2*13yy*cos(th2)"2+2*I3yy*cos(th3)*2
+2¥12xx*cos(th2)"2-4*m3*rc3/2*cos(th3)"2*cos(th2)"2)

Nom(1,6)= -m3*a2/2*sin(2*th2)-m2 *rc2/2*sin(2*th2)-13yy*sin(2 *th3+2*th2)
-m3*rc3/2*sin(2*th3+2*th2)+13xx*sin(2*th3+2*th2)-12yy*sin(2*th2)+12xx*sin(2 *th2)
-2*m3*rc3*a2*sin(2*th2+th3)

Nom(1,7)= -1/2*m3*rc3/2*cos(th1+2*th3+2*th2)-1/2*m3*rc32*cos(-th1+2*th3+2*th2)
+1/2*13xx*cos(-th1+2*th3+2*th2)+1/2*13xx*cos(th1+2*th3+2*th2)-1/2*I3yy*cos(th1+2*th3+2*th2)
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-1/2*13yy*cos(-th1+2*th3+2*th2)-m3*rc3/2*cos(th1)-13zz*cos(th1)-1/2*m3*rc3*a2*cos(2*th2-th1+th3)
-1/2*m3*rc3*a2*cos(2*th2+th1+th3)-1/2*m3*rc3*a2*cos(-th1+th3)-1/2*m3 *rc3*a2*cos(th1+th3)

Newme(1,8)= 1/2*m3*re3*a2*sin(2*th2-th1+th3)-1/2*m3*rc3*a2*sin(2*th2-+th1+th3)
-1/2*m3*rc3*a2*sin(th1+th3)+1/2*m3*rc3*a2*sin(-th1+th3)-m3*rc3/2*sin(th1)-I13zz*sin(th1)
-1/2*13yy*sin(th1+2*th3+2*th2)+1/2*[3yy*sin(-th1 +2*th3+2*th2)
+1/2*m3*rc3/2*sin(-th1+2*th3+2*th2)- 1/2*m3*rc3”2*sin(th1+2*th3+2*th2)
+1/2*I3xx*sin(th1+2*th3+2*th2)-1/2*13xx*sin(-th1+2*th3+2 *th2)

Nemd(1,9)= -m3*re342*sin(2*th3+2*th2)-m3*rc3*a2 *sin(2 *th2-+th3)-m3*sin(th3)*rc3*a2
-I3yy*sin(2*th3+2*th2)+13xx*sin(2*th3+2*th2)

Nemd(2,1)= cos(th1)*(2*m3*rc3/2+13yy-13xx-12yy+H2xx+122z
-4*m3*rc3/2*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*m3*rc3*cos(th3)*cos(th2)"2*a2
-4*13yy*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*I3xx*cos(th3)*sin(th2)*sin(th3)*cos(th2)
-4*m3*rc3*sin(th3)*sin(th2)*a2*cos(th2)-2*m3*rc3/2*cos(th2)"2-2*m3*rc3/2*cos(th3)*2
+4*3yy*cos(th3)*2*cos(th2)"2-4*I3xx*cos(th3)"2*cos(th2)"2-2*cos(th2)*2*12xx-2*I3yy*cos(th2)"2
-2*3yy*cos(th3)"2+2*cos(th2)"2*12yy+2*13xx*cos(th2)"2+2*[3xx*cos(th3)"2+2*m2*cos(th2)"2*rc2"2
+2*m3*cos(th2)"2*a2"2+4*m3*rc3”2*cos(th3)"2*cos(th2)"2+13zz)

Nemd(2,2)= sin(th1)*(2*I3xx*cos(th2)"2-2*cos(th2)"2*12xx+2*cos(th2)"2*12yy-2*13yy*cos(th3)"2
-2*13yy*cos(th2)"2+2*m3*rc3/2+13yy-13xx-12yy+12xx-2*m3*rc3/2 *cos(th2)"2+2*m3*a22*cos(th2)"2
+2*m2*cos(th2)"2*rc2"2-4*I13yy*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*I3yy*cos(th3)"2 *cos(th2)"2
+4*I3xx*cos(th3)*sin(th2)*sin(th3)*cos(th2)+4*m3*rc3*cos(th3)*cos(th2)"2*a2+2*I3xx*cos(th3)"2
-4*m3*rc372*cos(th3)*sin(th2)*sin(th3)*cos(th2)-4*m3*rc3*sin(th3)*sin(th2)*a2*cos(th2)
-4*I3xx*cos(th3)"2*cos(th2)"2-2*m3*rc32*cos(th3)"2+4*m3*rc32*cos(th3)"2*cos(th2)"2+12zz+13zz)

Newd(2,3)= Iyy*sin(2*th3+2*th2)-I2xx*sin(2*th2)- [3xx*sin(2*th3+2*th2)+m2*rc2/2*sin(2*th2)
+12yy*sin(2*th2)+m3*rc3/2*sin(2*th3+2*th2)+2*m3*rc3*a2*sin(2*th2-+th3)+m3*a2/2*sin(2*th2)

Nem(2,7)= -2*m3*sin(th3)*sin(th1)*a2*rc3
Nem(2,8)= 2*m3*sin(th3)*cos(th1)*a2*rc3

Neme(3,1)= m3*rc322*cos(thl)+1/2*m3*a2*re3*cos(-th1+th3)+1/2*m3*a2 *rc3*cos(th1+th3)
+I3zz*cos(th1)+1/2*m3*a2*rc3*cos(2*th2- th1+th3)+1/2*m3*a2*rc3*cos(2*th2+th1+th3)
+1/2*m3*rc3”2*cos(th1+2*th3+2*th2)+1/2*m3*rc3~2*cos(-th1+2*th3+2*th2)
-1/2*I3xx*cos(-th1+2*th3+2*th2)-1/2*I3xx*cos(th1+2*th3+2*th2)+1/2*I3yy*cos(-th1+2*th3+2*th2)
+1/2*13yy*cos(th1+2*th3+2*th2)

Nemd(3,2)= 1/2*¥13xx*sin(-th1+2*th3+2*th2)- 1/2*I3xx*sin(th1+2*th3+2*th2)+m3*rc3/2*sin(th1)
+I3zz*sin(th1)+1/2*m3*rc3*a2*sin(2*th2+th1+th3)-1/2*m3*rc3*a2 *sin(2*th2-th1+th3)
-1/2*m3*rc3*a2*sin(-th1+th3)+1/2*m3*rc3*a2*sin(th1+th3)+1/2*13yy*sin(th1+2*th3+2*th2)
-1/2*13yy*sin(-th1+2*th3+2*th2)-1/2*m3*rc32*sin(-th1+2*th3+2*th2)
+1/2*m3*rc3/2*sin(th1+2*th3+2*th2)

Newme(3,3)= m3*rc3*sin(th3)*a2-+m3*rc3*a2*sin(2*th2-+th3)+m3*rc3/2*sin(2*th3+2*th2)
+I3yy*sin(2*th3+2*th2)-I3xx*sin(2*th3+2*¢h2)

Newe(3,4)= 2*m3*sin(th3)*sin(th1)*a2*rc3

Newe(3,5)= -2*m3 *sin(th3)*cos(th1)*a2*rc3 (A-31)
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A.2 Three Degree of Freedom Spherical Robot

The spherical robot was chosen as an alternate configuration for three reasons. First, it

is a common robot configuration and modeling information is easily found in many

robotics texts, including Craig [16] and Sciavicco and Siciliano [59]

Table A-2
Denavit-Hartenberg Parameters for Spherical Robot

e
=
»

Qi

d;

-1t/2

0

Wik —

/2

d,

(=] Kol Rend

0

ds

Rotation Matrices:

¢ 0 -5
0 _
R =5, 0 ¢

0 -1 0

¢, 0 s,

b
R =ls, 0 -g¢

5,
]
[«
o - ©
_—0 O

Constants:

A&smyrytmsd,
Bs=mar; (note r3 is not constant)
E=mjr;’
l—'?s=:[2yy+13yy
Gs=loxxt3xx
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HS=I3ZZ+IZZZ
Ks=m3a22+m2r22
Og=m,r+(my+ms)d; (A-33)

Position Vector to CG

—-As, +Bcs,
r.; =| Ac +B.s;s, (A-34)
O+ B,
Rigid Inertia Forces

—-Ac, - Bss, Bcc, mgs,

B, =|-A4s, +B.cs, Bsc, mss, (A-35)
0 -Bs, mc,
3 2
.Bf‘ = —mys,1,

Rigid Inertia Interaction Torques

B, ,(L1)=(H,-E, -G,)cc,s, + B, (a,c;s, + a,s,¢,) - A4,a,s,

B ,(1,2)=—-(E,+ F,)s, + B,(a,s,c, — a,c,s,

B.,(1,3) = m,(a,s;s, + a,c,c,

B ,(2,1)=(H,-E, -G,)s;s,c,+ B,(a;s,;s, —a,c,c,)+ 4,a,c,

B ,(2,2)=(E, + F)c, - B,(a,cic, + a,ss,)

B.,(2,3)=-m,(a,c,s, - a,s,c,)

B,,3,1)=E,+1,,+G, +K +(H,-E, -G,)c;
B.,(3,2)=-B.a,c,

Bzo(3’3)= —m;a,s, (A-36)

Rigid Nonlinear Coriolis Torques

NRy(1,1)=-cos(th1)*(2*m3*rc3/2*cos(th2)"2+2*I3xx*cos(th2)"2-2*13zz*cos(th2)"2+2*I12xx*cos(th2)"2
-2*12zz*cos(th2)"2+13zz+13yy-13xx+12zz-+12yy-12xx-2*m3*cos(th2) *rc3*al)

NR¢(2,1)= -sin(th1)*(2*m3*rc32*cos(th2)"2+2*I3xx*cos(th2)"2-2*13zz*cos(th2)"2+2*I2xx*cos(th2)*2
-2*12zz*cos(th2)"2+13zz+13yy-13xx+12zz+12yy-12xx-2*m3*cos(th2) *rc3*al)

NR(3,1)= 2*sin(th2)*cos(th2) *(m3*rc3/2+13xx-13zz+12xx-122z)

NR1(1,2)=NRuo(1,3)= NReo(2,2)=NR(2,3)= NR1o(3,2)= NRyo(3,3)=0 (A-37)
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Rigid Nonlinear Centrifugal Torques

NCo(1,1)= cos(thl)*m3*cos(th2)*rc3*a2-cos(th1)*m3*a2*al- cos(thl)*m2*rc2*al

+sin(th1)*sin(th2)*m3 *rc3/2*cos(th2)+sin(th1)*sin(th2)*I3xx*cos(th2)- sin(th1)*sin(th2)*I3zz*cos(th2)
+sin(th1)*sin(th2)*I2xx*cos(th2)-sin(th1)*sin(th2)*12zz*cos(th2)-sin(th1)*m3*rc3*al*sin(th2)

NC,o(1,2)= -m3*rc3*(cos(thl)*cos(th2)*a2-+sin(th1)*al*sin(th2))
NC.0(2,1)=sin(th1)*m3*cos(th2)*rc3*a2-sin(th1)*m3*a2*al-sin(th1)*m2*rc2*al

- cos(th1)*m3*rc3/2*cos(th2)*sin(th2)-cos(th1)*cos(th2)*I3xx*sin(th2)+cos(th1)*sin(th2)*I3zz*cos(th2)
-cos(th1)*cos(th2)*I2xx*sin(th2)+cos(th1)*sin(th2)*I12zz*cos(th2)+cos(th1)*m3*rc3*al *sin(th2)
NC.0(2,2)= -m3*rc3*(sin(thl)*cos(th2)*a2-cos(th1)*al*sin(th2))

NC.(3,2)= m3*rc3*a2*sin(th2)

NCr0(1,3)=NC(2,3)=NC,0(3,1)=NC,(3,3)=0 (A-38)

Rigid Joint Torques

E+G+H+I,+(D-E-G), —Bac, -mas,
B =| -Bac, E+F 0 (A-39)
—-ma,s, 0 m,
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A.3 Three Degree of Freedom Wrist

The third configuration chosen was a wrist configuration due to its common use
in combination with other robots and availability for use in conjunction with the

anthropomorphic robot on the experimental testbed.

Table A-3
Denavit-Hartenberg Parameters for Wrist
Link aj Qi di 0;
3 0 /2 d3 03
4 0 -11/2 d4 04
5 0 /2 ds 05
6 0 0 ds O

Rotation Matrices

[cos(8,) 0 —sin(8,) |
R} =|sin(@,) 0 cos(8,)
o a1 0 |
[ cos(d,) —sin(d,) O]
R =|sin(d,) cos(6,) O
0 0 1]
cos(6;) 0 sin(6;)
R} =|sin(@,) 0 —cos(é;) (A-40)
0 1 0

Constants

Aw=m5r5+(d5+r6)m6
Ew=mers
J w=I6 'I6xx
K,=msrs"+meds’
Lw= ISxx'ISZZ+16yy'I6zz +2mgreds
Mw:ISyy+I6xx+2m6r6d5
NW:I4yy+I 5 XX+Iéyy+2m6r6d5 (A-4 1 )
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Position Vector to CG

mg cos(8,)sin(d;)
I =| m, sin(8,)sin(6;) (A-42)
m;(cos(6;)—r,)

Rigid Inertia Forces
—A4,8,8 A, 0
B, =| Aecss Asces 0 (A-43)
0 —-4s5 O

Rigid Inertia Interaction Torques

B,(L) =—s;{(K,+E, +L,)c,c; + A,d,c, + J cs(5:5 — c,c566)}
B,(L2)=—(M_ +E_ +L)s,—A,d;s,cs—J, cs(8,65 +C,Cs5)
B, (1,3) = I,c,s;

B ,(2,1)=s, {—(KW +E,+L)s,c,—Ads,+J, c(c,s5s— s4csc6)}
B, (2,2)=M_ +E_ +L)c,+A,d,cc; +J cs(c,cs —5,655)

B, (2,3)= I,.5,55
B,3)=-sX(K,+E, +L)-J s
B,(3,2) = J s:5¢¢

B, (3,3) = I,.cs (A-44)
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A.4 Six Degree of Freedom Anthropomorphic Robot with Wrist

Rotation Matrices

cos(6,) 0 sin(6,)
R} =|sin(d,) 0 —cos(d,)
0 1 0
cos(f,) —sin(d,) O
R, =|sin(@,) cos(d,) 0
0 0 1
cos(d,) —sin(d,) 0
R? =|sin(8,) cos(d,) 0
0 0 1
0 -1 0
R} =| cos(@,) 0 sin(8,)
-sin(@,) 0  cos(6,)
cos(d;) 0 sin(8,) |
R! =|sin(8,) 0 —cos(d;)
0 10 |
cos(d,) —sin(f,) 0]
R; =|sin(d,) cos(d,) 0 (A-45)
0 0 1

Constants

M, =myr, +(m, +m, +m;+mg)a,

N,, =myr, +(m, +ms +my)a, + mr, +(my +mg)d,

0,,, = myrs + myds +mgr;

P, =my, +d,(m +m, +m, +m, +ms+my)+d (m, + my +m, +ms +my)+mp,
M, =my+m +m,+m, +m, +ms+m, (A-46)

Taw
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1
Yoo =—| (M0, + N, 03 + O, ¢ =0, €,555,, )+ Oc;3,55

Position Vector To CG

(M, c,+ N, +0,,60, =0, €,55,,)—08,5,8;
(A-47)

T B +M, 5, +N, Sy +0,.685 +0,.,5x

B~
[—s,{Mc, +c,,(N+0c,) +05,,0,5} — 05,8, ¢ {Me, +C,y(N+0cs) = O5,,¢,55} — O, 0 T
—{Ms, +5,,(N+0c)+Ocyc,55} —8,{Ms, +5,,(N+0c;) +Ocyc,55) &, (M+N+0c;)—0s,c,55
—¢ {8, (N+0c,)+0c,,85} =8, {8, (N+0c)+Ocyc,85} Cy(N+0c,)— 05,8,
Os5(€5,8, —5,5) O55(5558, +6,€,) — 0,5

=0 (0S5 +8,6,C5) +5,5,C5}
0

Rigid Interaction Forces

Of=5,(Cy385 +5,,¢,C5) +¢,5,C5} O CsCs—55553)
0 0

(A-48)

Rigid Interaction Coriolis Forces

1.
R

aw

25, {M,, 5, +55(N,, + 0, ) +0,05655) -261M,,8, +33(N,, + 0,0+ 0, 000,5,) 0
2Sl {SZS (N aw + OaWCS ) + OaancttSS } - 2cl {SB (Naw +0awcs) +Oawc7_'$c4s5 } 0
-20, 5585858, +66,} -20, 5586555, +5¢,} 0
20, 85,(5505 +56,6)—G8,65} —20,,86(C8s +520,5) +5,5,65} 0
0 0 0
26{-c,(N,,+0,)+0, 5:C.55} 254Cxy(N,,+0, ) +0, 5,68} -2{8(N,,,+0,)+0,.0,¢,5}
20,6655 20,5555 20,5555
-20, 6858 +en0i6} -20,5 15585 +xC,G5} -20, {655 +550,65)
0 0 0
20, 665455 20,5655 20,5545
20, 6 {sp8s +eeG} -20, 5 {5585 +x0,05} -20, fexss +spc,65}
0 0 0
L 20,6tGsss s} 20, 6585858, +66,} -20,65565

(A-49)
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Rigid Interaction Centrifugal Forces

1
NC(LY) :F’ *aestM, 0 (N, +0,0)+ 0,551+ 0, 5555
Taw

NG 0D—

Taw

1
NC(L3) = *e{s(N,, +0,.0)+0, 5,65}

Taw

*¢tM, 0 —cx(N,, +0,6)+0,5:6,55}

1
NC(L4)= Iv;

Taw

*O,.(c5x¢, 55}

1
NC(1,5) =A—J— O, lclone,s; —csen 15,85}

Taw
NC,(1,6)=0

1
NG @D=—

Taw

*s M0,y (N, 40, 6)+0, 5,0,5]-Cs,Ss

1
NC(2.2)= v o[ M0 (N, + 0,0+ 0, 56,5]

Taw

NG, =Mi*{—cB(Naw+0Wcs)+%c4ss}

aw

1
NG @Y=

Taw

NC(25) :ML {0, I5,(5508 —¢s0) 65,851}

NC,(2,6)=0
NC,(3)=0

*O,55(s55¢,—65,)

1
NG 3= M5, +55 (N, +0,6)+ O, 05}

Taw

1
NGBY=—

Tow

* {‘SB (N aw + Oawcs ) + Oachc4S5 }

1
NC,(34)=
Tew

1
]\C/'(395):M

Taw

* {_Oachc4SS}

*HO,.65 6}
(A-50)
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